WatefCon 2018: Future of Water in Europe Aveiro 5-7 September 2018

Hydropower energy recovery in water pipe networks: spatial regression analysis using GIS, assessing the correlation between energy recovery potential and geographical data

Dorde Mitrovic^{1,*}, Juan Antonio Rodriguez Diaz², Jorge Garcia Morillo², Paul Coughlan³, John Gallagher¹, Aonghus McNabola¹

- ¹ Department of Civil Structural and Environmental Engineering, Trinity College Dublin, Ireland;
- ² Department of Agronomy, Agrifood Campus of International Excellence ceiA3. University of Córdoba. Spain;
- ³ Trinity Business School, Trinity College Dublin, Ireland.

- Water Pipe Networks = Water Supply Networks + Wastewater Networks
- The water industry is the fourth energy intensive industry in the UK \rightarrow 5 tonnes CO2 + 7.9 TWh of energy
- Methods to improve sustainability

Micro-hydropower energy recovery (MHP)

Water Supply Networks (WSNs)

Source: Queensland Environmental Protection Agency and Wide Bay Water Corporation (2004): Managing and Reducing Losses from Water Distribution Systems. A series of 10 manuals

- Large hydropower
- Small hydropower
- Micro-hydropower
 - SRs
 - **CVs**
 - **PRVs**
 - **BPTs**

10-1 MW

1 MW - 100 kW

100-1 kW

- Water Pipe Networks = Water Supply Networks + Wastewater Networks
- The water industry is the fourth energy intensive industry in the UK \rightarrow 5 tonnes CO2 + 7.9 TWh of energy
- Methods to improve sustainability

Micro-hydropower energy recovery

Wastewater Networks (WWNs)

a) Downstream treated effluent micro-hydropower plant

- Barriers which prevent exploitation
 - Technical
 - Variations of flow and pressure

Pressure control

Source: Carravetta et al. 2012

- Conventional turbines cannot be scaled down in economically viable way
- Lack of performance curves for Pump-As-Turbines (PATs)

Source: Binama et al. 2017

- Barriers which prevent exploitation
 - Non-technical
 - Lack of incetives
 - Lack of awareness about the existing resource available
 - Lack about awareness about the environmental and economic impact

- Why is so hard to assess the potential of a large geographical coverage?
- Network models either do not exist or are not publicly available for the whole area of interest
- In this work: Is there a correlation between the MHP potential of sites and geographical data?

METHODS

Studied sites

Locations of valves with excess pressure

- 51 sites in Ireland and 187 sites in Wales (Provided by Irish and Welsh Water)
 - SRs
 - CVs
 - PRVs (2/3 of the set)
 - BPTs
 - Inlet and outlet to WWTPs
- Data available for each site
 - Longitude and latitude coordinates
 - Site type
 - Mean annual flow and pressure (2011)

Calculating the potential energy that can be recovered

$$Power = \rho gQH\eta \text{ [kW]} \qquad \eta = 0.65$$

SPATIAL REGRESSION ANALYSIS

- The aim of the research: Total MHP potential in the Atlantic Area part of Europe WPNs
- Impossible to collect data about all sites in the region of interest!
- Idea for the approach: Air quality modelling → Land Use Regression (LUR)
- Analogy: Dependant variables \Rightarrow $Power = \rho gQH\eta$ [kW]
- Challenge: Finding independent variables which would explain varioation of the potential without have the networks to which the sites belong

Source: http://www.integrated-assessment.eu

SPATIAL REGRESSION ANALYSIS (Population)

$$Power = \rho gQH\eta \text{ [kW]}$$

Q = f (population downstream)

 $Q = f \text{ (type of infrastructure)} \rightarrow Q_{SR} >> Q_{PRV}$

Reference System: ETRS89

Type and Resolution of the input data: Grid with cell size 1x1 km² (ec.europa.eu)

ArcMap

Type and Resolution of extracted data (variables):

Population inside the buffers: 1,3 and 5 km

 $\frac{\textit{Part of the cell overlaid with the buffer}}{\textit{Area of the cell}(1x1km)} \times \textit{population within the cell}$

Population inside a grid cell: 1x1 km²

Extraction and calculation of population variables

Source: The statistical office of the European Union (ec.europa.eu)

SPATIAL REGRESSION ANALYSIS (Topography)

- $Power = \rho gQH\eta$ [kW]
- Excess pressure = f (terrain variability)
 - Hilly vs flat terrain
 - Large difference between a source and the rest of a network

• Tricarico et al. 2017. $\rightarrow I_{Net} = \frac{H_{Tanks,max} - Z_{min}}{L_{Tot,Net}/N_{Tanks}}$

 I_{Net} \nearrow , Energy recovered by means of PATs \nearrow

SPATIAL REGRESSION ANALYSIS (Topography)

Type and Resolution of the input data:
 Digital Elevation Model (DEM) with cell size of 1x2 arc-second (≈30x60 m)

- Type and Resolution of the extracted data (variables):
 - SD of the clipped DEM buffers: 0.5,1,3 and 5 km
 - Slope

Extraction and calculation of topography variables

Source: United States Geological Survey website (www.usgs.gov)

RESULTS

Gallagher et al. 2015. MHP site classification in Ireland and Wales

Site classification		No. of sites	No. of sites						
		5–10 kW	10-15 kW	>15 kW	Total				
Ireland	SRV	1	3	4	8	276			
	PRV^{a}	5	1	10	16	585			
	WWTP	0	2	2	4	164			
Wales	SRV	1	0	5	6	490			
	PRV	25	8	5	38	397			
	WWTP	4	2	2	8	134			
Total	SRV	2	3	9	14	766			
	PRV ^a	30	9	15	54	982			
	WWTP	4	4	4	12	298			

^a Four control valves included within PRV group in Ireland.

Distribution of the potential for energy recovery

RESULTS (Population)

Distribution of the potential for energy recovery

		R squared									
			Irel	and		Wales					
alternative	Filters applied				No.				No.		
					of				of		
		1km	3km	5km	sites	1km	3km	5km	sites		
0	none	0.063	0.038	0.023	51	0.01	0.011	0.009	165		
1	type≠WWTP	0.098	0.062	0.035	44	0.01	0.011	0.009	158		
2	type=PRV	0.214	0.193	0.148	28	0.002	0.003	0.008	152		
3	type=PRV & County=Dublin/Cardiff	0.183	0.161	0.118	26	0.016	3E-04	0.044	15		
4	type=PRV & Power<15kW	0.003	0.019	0.061	22	0.015	0.014	0.022	147		
5	type=PRV & 2 <power<50kw< td=""><td>0.216</td><td>0.185</td><td>0.157</td><td>14</td><td>0.004</td><td>0.001</td><td>2E-04</td><td>89</td></power<50kw<>	0.216	0.185	0.157	14	0.004	0.001	2E-04	89		

Linear Least – Squares Regression analysis between the energy recovery potential of the sites and population inside buffers

RESULTS (Population)

Correlation between Energy recovery potential of sites and population inside 1x1 km² grid cells

RESULTS (Topography)

Linear Least-Squares
Regression analysis between
the energy recovery
potential of the sites and
terrain variability variables

Filtering did not improve the R²

	_	ternative Filters applied	Ireland				No. of	Wales				No. of
	aiternative		0.5km	1km	3km	5km	sites	0.5km	1km	3km	5km	sites
SD of DEM buffers	0	none	0.011	0.002	0.007	0.001	51	0.026	0.040	0.045	0.037	186
	1	type=PRV	0.057	0.006	0.045	0.042	28	0.004	0.004	0.006	0.014	173
	2	type=PRV & Power<15kW	0.000	0.003	0.027	0.039	22	0.001	0.001	0.001	0.000	168
	3	type=PRV & 2 <power<50kw< td=""><td>0.005</td><td>0.060</td><td>0.000</td><td>0.000</td><td>14</td><td>0.002</td><td>0.000</td><td>0.001</td><td>0.013</td><td>81</td></power<50kw<>	0.005	0.060	0.000	0.000	14	0.002	0.000	0.001	0.013	81
	4	Power<50	0.003	0.008	0.007	0.007	46	0.002	0.003	0.007	0.010	182
Slope	0	none	0.069			51	0.044				186	
	1	PRV	0.058			28	0.000				173	
	2	P<50	0.044			46	0.000			182		
	3	3 PRV & 2 <p<50< td=""><td colspan="3">0.001</td><td>14</td><td colspan="3">0.005</td><td>81</td></p<50<>		0.001			14	0.005			81	

Negative slope of regression lines

$$\frac{dPower}{dPopulation} > 0;$$
 $\frac{dPower}{dTerrain\ variablitity} > 0$

Nonlinear regression models were considered, but the datasets were too scattered and did not show any nonlinear trends!

CONCLUSIONS

Spatial regression analysis was performed to assess is there a correlation of energy recovery potential and population and terrain variablility variables.

Results showed that there is no significant correlation (the best R²=0.26), and that the variables used cannot explain the variations in the potential.

Previous extrapolation of the MHP potential in the literature by population could therefore be erroneous!

Future research

- Finding new independent variables which will be able to explain variations of the MHP potential.
- Change the scale on which the correlation is assessed (e.g. Correlation of a sum of the
 potential of a cluster of sites and the geographical data of the whole area which is covered by
 the cluster.
- Exploring different approaches.

Thank you for your attention!

mitrovid@tcd.ie

