

Assessment of Aerosol Emission Sources in a Traffic Site Combining On-line and Off line Measurements

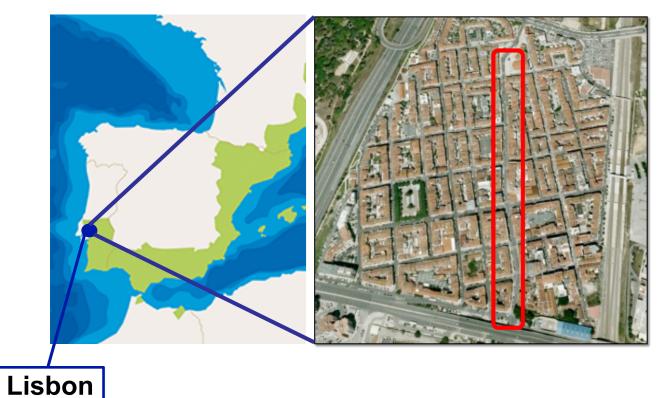
Joana T. Coutinho¹, Nuno Canha^{1,2}, Catarina Galinha¹, Vânia Martins¹, Tiago Faria¹, Marina Almeida-Silva¹, Joana Lage¹, Célia Alves², Martin Rigler³, Griša Močnik⁴, Evangelia Diapouli⁵, Konstantinos Eleftheriadis⁵, Susana Marta Almeida¹

¹ C²TN - Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, EN 10 ao km 139.7, 2695-066, Bobadela, Portugal; ² CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal; ³ Aerosol d.o.o., Kamniška ulica 39a, 1000, Ljubljana, Slovenia; ⁴ Jozef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia; ⁵ NCSR Demokritos, 15310, Athens, Greece

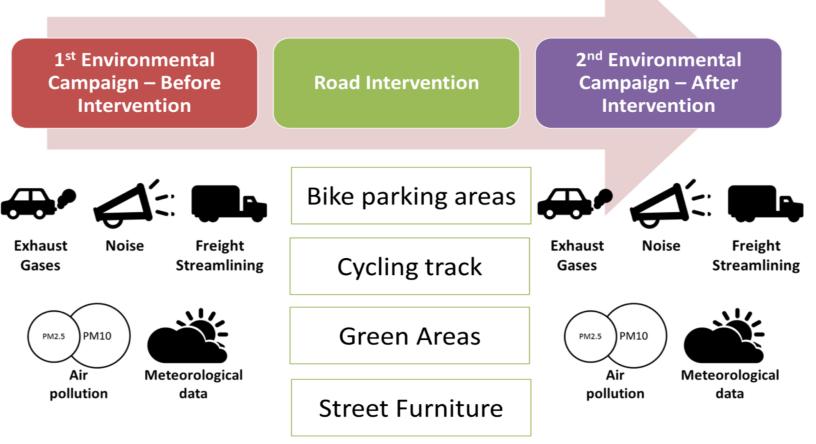
e-mail: coutinho.joana@ctn.tecnico.ulisboa.pt; twitter: joanacoutinho

Abstract

In urban areas evidences from epidemiological and experimental studies show that traffic-related air pollution has adverse effects on respiratory and cardiovascular systems. Urban air pollution accounts for 3% of mortality from cardiopulmonary disease and 1% of mortality from acute respiratory infections in children under 5 years, worldwide. Therefore, disease and mortality associated with vehicle emissions represent a substantial challenge in public health.

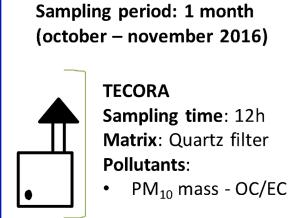

Source apportionment, using receptor models, is an essential tool to support the implementation of the European and Member States legislation on air quality and principally to reduce the impact of exposure to Air Particulate Matter (PM) on human health.

This work was developed in the framework of the Interreg Med project REMEDIO and aims to assess the aerosol emission sources in an urban traffic site, located in the outskirts of Lisbon.


Methodology

• Study site:

Av. Moscavide (Loures, PT) \rightarrow urban-traffic background


Strategy of REMEDIO project to Avenue of Moscavide:

Experimental set-up for the 1st Environmental Campaign:

Elements OC/EC

Thermal optical technique

Equipment Carbon Aerosol Analyser (Sunset Laboratory)

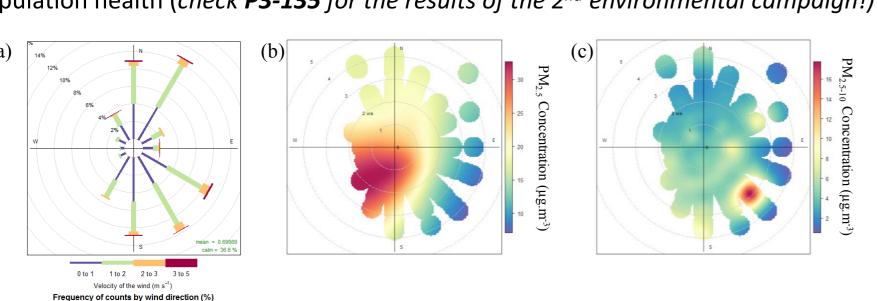
Analysis of OC and EC

NIOSH Method 5040

Detection limit: 0.2 μgC.cm⁻²

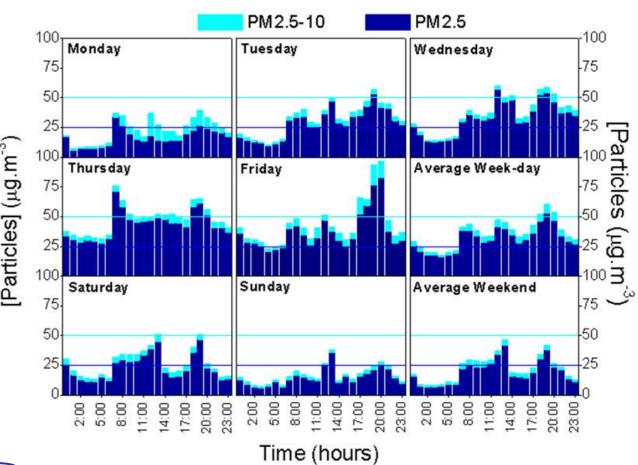
GENT Sampling time: 12h **Matrix**: Polycarbonate filters **Pollutants:**

• PM_{10} and $PM_{2.5}$ mass • Na, Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Sr, Pb XRF


TSI DustTrak™ DRX Aerosol Monitor 8533 **Measuring time**: continuous 24h (monitoring frequency time – 1 min) PM₁₀, PM_{2.5}

Results and Discussion

PM₁₀ and PM_{2.5} daily levels exceed the guidelines (WHO)


mitigation measures should be implemented in the studied area in order to protect the population health (check **P3-135** for the results of the 2nd environmental campaign!)

(a) frequency of wind direction and velocity, (b) pollution dispersion maps of PM_{2.5}, and (c) pollution dispersion map of $PM_{2.5-10}$ during the monitoring campaign at the studied street canyon.

- \checkmark PM_{2.5} and PM_{2.5-10} hourly variation (time of the day in hours) and average concentration in weekdays and weekend;
- ✓ PM concentrations were higher on weekdays. than on weekends, which can be explained by higher road traffic levels on weekdays.

Concentrations (ng.m ⁻³)								
		DM		oncentratio				
	PM _{2.5}			GHT DAY			NIGHT	
	Mean STD		NIGHT Mean STD		Mean STD		Mean STD	
21-								
Na	755	382	a)	a)	587	201	624	260
Al	73.4	74.3	217	203	145	109	350	467
Si	209	178	193	166	478	263	345	194
S	339	330	315	320	167	87.4	123	67.2
Cl	551	622	296	341	a)	a)	992	949
K	159	116	113	72.2	a)	a)	75.1	30.2
Ca	326	305	187	163	1146	743	691	499
Ti	11.7	9.78	8.13	3.61	29.9	19.4	23.1	9.5
V	7.43	7.15	9.62	5.90	a)	a)	a)	a)
Cr	1.53	1.56	1.01	0.17	2.86	1.38	3.05	1.88
Mn	5.15	0.84	4.10	1.61	15.8	8.22	17.9	5.36
Fe	195	170	123	74.9	412	232	281	148
Ni	2.08	1.27	3.63	1.90	1.84	0.89	1.70	1.03
Cu	9.24	4.69	8.04	3.12	32.9	19.6	34.5	21.0
Zn	12.7	9.10	10.6	5.19	36.4	17.5	31.2	14.9
Sr	2.84	0.79	a)	a)	2.64	1.85	3.47	1.49
Pb	14.6	9.81	11.0	5.46	30.1	15.1	37.6	16.3

Concentrations of chemical elements

predominance of elements from marine aerosols origin (Na and Cl); followed by those from the Earth's crust (Ca, Fe, Si, Al); and, finally, by chemical elements associated to with anthropogenic sources, mainly traffic influence (S, Ti, V, Cr, Mn, Ni, Cu, Zn, Sr, Pb).

Results from this study clearly showed that exposure to air pollutants in a street canyon is a problem that should be tackled. The low dispersion of pollutants observed can be explained by the street layout and the intense traffic in some periods of the day.

COLOSSAL

Acknowledgments

This work was supported by the European Regional Development Fund (ERDF) through the Interreg Med project REMEDIO (Ref. 862). Additionally, JTC wishes to acknowledge the Life Program through the Life Index Air project and the Cost Action - CA16109 COLOSSAL. The FCT support is gratefully acknowledged by C2TN/IST authors (through the UID/Multi/04349/2013 project). All the authors kindly acknowledge the Municipality of Loures for the permission to park the container in the Avenue during more than a month.

Project co-financed by the European Regional Development Fund

