

EDLRIS European Driving License for Robots and Intelligent Systems

Course Structure Overview

Content:

Artificial Intelligence BASIC	2
Artificial Intelligence ADVANCED	4
Robotics BASIC	6
Robotics ADVANCED	9

Artificial Intelligence BASIC

Core competences of a graduate:

- ab1: Is able to describe AI, to recognize AI systems and to distinguish AI systems from other concepts and systems.
- **ab2:** Knows the areas of application of AI and their use cases and is aware of the technical, social, ethical and legal implications.
- **ab3:** Is able to formalize a problem and to apply algorithms and data structures to solve this problem.
- **ab4:** Is able to design and practically implement a very simple AI system for a given application.

- t1: Is able to select and use an adequate teaching method that meets the student's need for instruction.
- t2: Understands and adopts the learner-centered approach of the program.
- t3: Is familiar with the assessment criteria of the EDLRIS program.
- t4: Is familiar with the online training approach applied in the EDLRIS program.

Artificial Intelligence BASIC course structure:

Face-to-Face (F2F)	Online	F2F		Online	F2F	
Day 1		Day 2	Day3		Day 4	Day 5
Getting to know each	Python online	Questions and	Machine Learning	Search	Questions and	Project day:
other.	learning course	answers to online	ML	algorithms	answers to online	implement a
Introduction to	User Input;	session.	(270 min; ab2, ab3)	intro:	session.	practical project
EDLRIS.	Variables;	(20 min; ab4)			(20 min; ab3)	(360 min; ab4)
(40 min; t2,t3,t4)	Data Types and			Graph and Tree		
AI Definitions and	Math;	Programming and		Data Structures;	Problem solving by	
Applications.	If/Else;	Natural Language		Stack and	search algorithms:	
(70 min; ab1, ab2)	Lists;	Processing NLP		Queue;	practical examples.	
	Loops;	(225 min; ab3, ab4)		Breath-Fist	(240 min; ab3)	
Natural Language	Functions;			Search;		
Processing.	Libraries;			Depth-First		
(125 min; ab1, ab2,	RegEx;			Search;		
ab3)				A* Search;		
Using Logic to Create		Bot-challenge.	CV and ML ethics.		Search ethics.	
Meaning	(1-2 weeks; ab4)	(30 min; ab4)	(30 min; ab2)	(1-2 weeks;	(30 min; ab2)	
(75 min; ab3)				ab3)		
Introduction to		NLP – ethics.	Introduction to		EDRLIS course	
Programming:		(30 min; ab2)	search		reflection and	
Preparation for Online			(30 min; ab1)		feedback.	
Sessions					(30 min; t1,t2)	
(20 min; ab4)						
Reflection: Teaching		Computer Vision CV.	Reflection: Teaching		Project suggestions	
methods (only		(45 min; ab1, ab2,	methods (only		and preparation.	
trainers)		ab3)	trainers)		(30 min; ab4)	
(30 min; t1,t2)			(30 min; t1,t2)			

Artificial Intelligence ADVANCED

Core competences of a graduate:

- **aa1:** Is familiar with different AI areas and frameworks and is aware of ethical, social and legal implications of AI systems.
- aa2: Masters the required mathematical basics and is able to understand and describe basic AI concepts.
- **aa3:** Is able to describe problems, which require an AI-related solution, in a formal way, and furthermore, is able to efficiently solve those problems by applying adequate algorithms.
- **aa4:** Knows the fundamental properties of problems, representations and algorithms.
- **aa5:** Is able to analyze, configure, maintain and integrate an existing AI tool and is able to systematically design and practically implement an AI system for a given application.

- t1: Is able to select and use an adequate teaching method that meets the student's need for instruction.
- t2: Understands and adopts the learner-centered approach of the program.
- t3: Is familiar with the assessment criteria of the EDLRIS program.
- t4: Is familiar with the online training approach applied in the EDLRIS program.

Artificial Intelligence ADVANCED course structure:

Face-to-Face (F2F)	Online	F2F		Online	F2F	
Day 1		Day 2	Day3		Day 4	Day 5
Getting to know each	Recap of required	Fundamental	Basic Al concepts –	Most common	Properties of	Project day:
Introduction to	coding, data	concepts	Modeling of a	different Al	and algorithms.	practical project
EDLRIS. (40 min; t2,t3,t4)	structures (graph, tree), time - space	(90 min; aa2, aa4)	problem; Problem analysis;	areas (introduction,	(90 min; aa4)	(270 min; aa5)
Al Definitions and history of Al (45 min; aa1)	complexity, common algorithms (DFS, BFS)	Basic Al concepts (theory + examples): Search Declarative	Problem solving (270 min; aa2,aa3, aa4)	online examples) <i>(1-2 weeks;</i>	Most common frameworks for different AI areas (questions, F2F	
Al areas: overview, challenges, questions behind, applications: NLP, CV, ML, KR&R,	Fundamental mathematical concepts	Data driven (270 min; aa2,aa4)		ab1)	exercises) (180 min; aa1)	
planning, common sense (275 min; aa1)	Al areas: challenges, questions behind, applications					
	(1-2 weeks; aa1, aa2, aa4)		Technical, social, economic, ethical and legal implications of the application of AI (90 min; a1)		Project draft and preparation. (90 min; aa5)	Reflect on the teaching methods used in this course and feedback (only for trainers) (90 min; t1,t2)
			application of Al (90 min; a1)			for trainers) (90 min; t1,t2)

Robotics BASIC

Core competences of a graduate:

- **rb1:** Is familiar with the history, the background, the terminology and the fields of application of robotics and its use-cases and knows about the social, ethical and legal implications.
- rb2: Understands the big picture of robot system i.e. the context and the ecosystem where the robot is integrated.
- **rb3**: Understands the potential of robotics and is creative in imagining new scenarios of robotics, like human user interaction.
- rb4: Knows and understands the fundamental robotics concepts.
- **rb5**: Knows the components required to implement the fundamental robotics concepts.
- **rb6:** Is able to integrate the components in a robotics system for a simple task.

- t1: Is able to select and use an adequate teaching method that meets the student's need for instruction.
- t2: Understands and adopts the learner-centered approach of the program.
- t3: Is familiar with the assessment criteria of the EDLRIS program.
- t4: Is familiar with the online training approach applied in the EDLRIS program.

Robotics BASIC course structure:

Face-to-Face (F2F)	Online	F2F		Online	F2F	
Day 1		Day 2	Day3		Day 4	Day 5
Getting to know each	Each participant	Presentation of the	Solve Project 1 (see	Learn the basics	Participant present	Solve Project 3a)
other.	investigates real	online investigated	below for project	of Python	their model	Solve Project 3b)
Introduction to	robotics systems	examples by each	description) using	programming.	(flowchart) to the	using Python or EV3
EDLRIS.	and identifies its	participant, discussion	graphical		group, discussion,	(270 min; rb6)
(45 min; t2,t3,t4)	robotics	and reflection.	programming.	Create a model	reflection.	
	components. Then	(45 min; rb2)	(90 min; rb6)	of a robot using	(90 min; rb4)	
History, terminology,	she/he prepares at least on example	Open innovation:	Introduction to text-	flowchart design (sense-	Solve Project 2a)	Solve a free project
cases of robotics	which will then be	markets innovative	(Python for FV3)	plan-act.	using Python or	narticinants)
(45 min: rh1)	presented and	ideas future robotics	(190 min [.] rh6)	plan deci	FV/2	(90 min; rh6)
(43 1111, 101)	discussed in Day 2.	applications blended	(50 mm, 150)	(1-2 weeks: rb4.	(270 min: rh6)	(50 mm, 150)
		society – HRI		(vec., vec.) (v)	(270 mm, 150)	
	(1-2 weeks; rb1, rb2,	(180 min; rb3)				
Ethics, social and legal	rb3)	Construct a simple	Solve Project 1 using			
implications.		mobile robot (without	text-based			
(45 min; rb1)		sensors).	programming			
		(45 min; rb2, rb4, rb5)	Python for EV3.			
			(90 min; rb6)			
What is in the box –		Introduction to	How to do modelling			Reflect on the
familiarizing with		graphical	(introduction to flow			teaching methods
robotics components		programming (EV3):	charts and structural			used in this course
(225 min; rb1, rb2,		design simple	models).			and feedback (only
rb5)		programs.	(90 min; rb4)			for trainers)
		(90 min; rb1, rb2, rb5)				(90 min; t1,t2)

Robotics Basic Project 1:

Standard Lego robot without sensors (no feedback; participants should realize that without any sensing/feedback the distance varies at each run):

- The robot drives with fixed speed and time towards a traffic light;
- The incline of the way is changed (e.g. by using a ramp)

Robotics Basic Project 2:

Project 2a:

Standard Lego robot with color sensor facing down (sensor feedback):

• The robot drives forward and reads the 'traffic lights' from colored spots (red, green, yellow) and reacts accordingly.

Project 2b:

Standard Lego robot with color sensor and light sensor facing down (sensor feedback):

• The robot drives along a path (line follower) and reads the 'traffic lights' from colored spots (red, green, yellow) and reacts accordingly.

Robotics Basic Project 3:

Project 3a:

Line-Follower Lego robot with color sensor and light sensor facing down + obstacle detection (sensor feedback, states):

- The robot drives along a path (line follower) and detects obstacles in front of it;
- The robot avoid obstacle and find again the line.

Project 3b:

Line-Follower Lego robot with color sensor and light sensor facing down:

- The robot drives along a path (line follower) and detects colored spots at street crossings;
- The robot has to decide to turn right/left/straight according to the color of the spot in order to reach the target destination.

Robotics ADVANCED

Core competences of a graduate:

- ra1: Masters the required basics of mathematics, programming and physics.
- ra2: Knows about and is able to apply a fundamental systematic engineering approach.
- ra3: Is able to design formal models with regard to mechanical, electrical and computational aspects and is capable to model, simulate and design robots.
- ra4: Has knowledge of the fundamental mechanical, electronic and algorithmic and computer science concepts and is able to apply appropriate tools and methods required to configure and to implement a robotics system.
- ra5: Works with real life equipment (robots).
- **ra6:** Integrates soft skills (ethical and social considerations) in robot design.

- t1: Is able to select and use an adequate teaching method that meets the student's need for instruction.
- t2: Understands and adopts the learner-centered approach of the program.
- t3: Is familiar with the assessment criteria of the EDLRIS program.
- t4: Is familiar with the online training approach applied in the EDLRIS program.

Robotics ADVANCED course structure:

Online	Face-to-Face (F2F)	Online	F2F		Online	F2F	
	Day 1	Exercises in	Day 2	Day3		Day 4	Day 5
Acquiring	Getting to know	Python	Solutions for the	Mobile Robots:	Implementation	The state	Practical work
required prior	each other.		inverse geometric	big picture,	of the	Estimator.	with the mobile
knowledge:	Introduction to	Implementation	model.	sensors.	geometrical and	(60 min; ra3)	robot (project:
	EDLRIS.	of the geometric	(60 min; ra3)	(90 min; ra2, ra3)	kinematical		"driver assistant
Linear algebra	(45 min; t2,t3,t4)	model in Python.			models in		system").
	Introduction to		Implementation of	Mobile Robots:	Python; open	Sensor fusion.	(270 min;
Mechanics,	Robotics systems.	Study of inverse	the inverse	the geometrical	loop (task drive a	(60 min; ra3)	ra4,ra5)
Physics	(140 min; ra2)	geometrical	geometric model in	model.	circle);		
(kinematics 2D,		model.	Python.	(90 min; ra3)	(ra1, ra3)		
forces,			(60 min; ra1, ra3)				
torques)		Study of the			Ethical and social		
		manipulator			considerations in		
Programming	Geometric model	construction.	The manipulator	Mobile Robots:	robotics	PID introduction.	
in Python	(manipulator;		simulator.	the kinematical	(ra6)	(60min; ra3)	
	forward	(1-2 weeks; ra1,	(60 min; ra3, ra4)	model.			
(ra1)	kinematics)	ra2, ra3)	Experiments with	(180 min; ra3)	(2 weeks)	Implementation	Reflect on the
	(175 min; ra3)		the manipulator:			of the state	teaching
			drawing a curve.			estimators and	methods used in
			(180 min; ra4, ra5)			PID controllers in	this course and
						Python.	feedback (only
						(180 min; ra3)	for trainers)
							(90 min; t1,t2)
				1	1	1	