

Joint Menu of Renovation Options

v.1 | 29 April 2020

Version

	PP4 - OCMW leper
	PP5 - Brighton & Hove City Council
	(BHCC)*
	PP6 - Amicus Horizon (now Optivo)**
	PP7 - Hastings Borough Council
	PP9 - Habitat du Littoral
	PP12 - Zonnige Kempen
	PP13 - Association pour la Recherche
	et le Développement de Méthodes et
	Processus Industriels (ARMINES)*
Contributing partners	PP14 – Clavis
	PP16 – Optivo (was Amicus Horizon)**
	Please note:
	*Hastings Council and ARMINES were
	contributors to the partner meeting
	workshops but did not carry out
	retrofits.
	** Amicus Horizon together with
	another Housing Association (Viridian)
	joined to become Optivo in May 2017.
Link with project	D5.2.3 Joint Menu of Renovation
(WP/Deliverable/Objective)	Options
Date	29/04/2020
Version	V1
Status of the document	Completed
Language	English

Interreg Like European Union 2 Seas Mers Zeeën SHINE

European Regional Development Fund

Sustainable Houses in Inclusive Neighbourhoods (SHINE) brings together 14 partner organisations from 4 member states. The project's overall objective is to reduce carbon emissions in residential dwellings. The project is co-financed by Interreg 2 Seas and the European Regional Development Fund.

Visit our website: www.2seas-shine.eu

Index

Version	p.2
Index	p.4
Introduction	p.5
Methodology	p.7
Findings from comparisons of studies and renovations	p.23
Summary and conclusions	p.30
Appendix A - Partner Case Studies	p.35
Project partners	p. 53

Introduction

Buildings are responsible for approximately 40% of energy consumption and 36% of CO2 emissions in the EU. Currently, about 35% of the EU's buildings are over 50 years old and almost 75% of the building stock is energy inefficient, while only 0.4-1.2% (depending on the country) of the building stock is renovated each year. Therefore, more renovation of existing buildings has the potential to lead to significant energy savings – potentially reducing the EU's total energy consumption by 5-6% and lowering CO2 emissions by about 5%.1

The SHINE project

SHINE is an Interreg 2 Seas funded project which is innovative due to its 'bottom-up' approach. In the past, renovations were carried out with a top-down approach which meant that end-users were not engaged. By setting up a participation process (a 'bottom-up' approach) in a district, inhabitants have been more involved in the renovation process. The importance of engagement and close communication with residents throughout the retrofitting process, along with resident lifestyle and behaviour, are key factors in achieving high performance retrofit.

Joint Menu of Renovations

In the Project Programme, a joint menu of renovation options was outlined as a deliverable for the project partners of WP4. The renovation options in the menu offer building solutions that will deliver the most cost effective, energy efficient and long-lasting impact. The list has been composed during thematic work groups. The partners have been testing various options during their pilot schemes. Following evaluation of the pilots the menu has been adjusted. This menu of renovation options will be disseminated to

¹ Source: https://ec.europa.eu/info/news/new-rules-greener-and-smarter-buildings-will-increase-quality-life-all-europeans-2019-apr-15_en

other organisations and groups be implemented in and beyond the 2 Seas area.

A common problem in the past was that the expected results of energy efficient renovations weren't reached, especially in the rental market. The aim of Work Package 4 (WP4) has been to describe a joint method of district renovations combined with setting up a participation process with a bottom-up approach. In WP4, the partners aimed to improve renovation standards in several districts. Those involved are funded by social housing providers, local authorities and public agencies. The level of investment has been set to achieve maximum energy efficiency while remaining cost effective.

Objective: The partners sought to deliver a joint menu of renovation options that will achieve the most cost effective and long lasting impacts.

The renovations have been carried out using a district approach and has several advantages:

- the dwellings often have a similar archetype and age;
- setting up a participation process (see WP1) is easier to complete in a specific neighbourhood.

All buildings renovated will return to social ownership and be rented to low income households. The strength of this cross-border cooperation is that the detailed method can be tested in a significant number of pilot schemes and under different conditions to allow them to be replicated. Some retrofit solutions are complex due to the age of the properties and because they are often located in conservation areas. Partners aimed to address these challenges by finding cross-border solutions.

Methodology

The partners sought to develop a joint approach to investment and to develop a method for district renovations combined with setting up a participation process with a bottom-up approach. The aim was to develop a new method which would ensure the expected results were reached.

Planning

Partners agreed to define what each district required in the form of different types of renovations. The work was carried out at partner meetings through an iterative process of adding measures until a 'master list' was created. At each partner meeting, discussions were held in workshops to determine which measures were most energy efficient, cost effective and technically achievable. Partners fed back their experiences of retrofits and discussions took place on which options worked well which measures should be avoided on the basis of cost, ease of installation etc. This list became the final Joint Menu of Renovation Options.

Once the works commenced a couple of additional measures were identified that were not originally included in the list.

These were:

- Weather Compensators (Brighton and Hove Council)
- Replacement window surrounds (Optivo)

SHINE Joint menu of renovations master list

Measure	Description of upgrade	Energy	Benefits	Barriers
		improvement/savings		
Upgrade lighting to LED	Replace all incandescent	Up to 50% energy	Fewer changes of	Access to
	screw-in lightbulbs with	saving.	lamps. Lower bills.	properties can be
	screw-in LED bulbs to		Low maintenance.	an issue. Whole
	match the performance			fittings to be
	of the previous bulb.			replaced where
	Often light fixtures also			lamps
	need replacing.			incompatible.
Draught proofing	Includes chimney	Varies depending on	Raises ambient	Installing multiple
	balloons, door draught	measure	temperature of the	small measure can
	excluders, fittings		home by reducing	be time consuming
	around window frames.		circulation of cold	for a small energy
	Secondary glazing also		air.	uplift.
	included in this			
	category.			
Cavity wall insulation	Includes blown	Saving: Around 200	Relatively low cost	Quality control is

	mineral	fibre,	euros savi	ng on	fuel	measur	e with g	ood	essentia	al to	avoid
	polystyrene		bills per ye	ar.		energy	increase.		cold bre	eaks.	
	beads or gr	anules									
	and	urea									
	formaldehy	de									
	foam.										
Internal wall insulation	Suited to solid	wall	Saving: U	p to	400	High	increase	in	High	cost	for
	homes. Rigid insu	ulation	euros per	home	per	energy	efficie	ency	installa	tion	-
	board (plaster	rboard	year.			e.g. SAF	points		around		8,000
	backed with	rigid	Energy eff	ciency	200-				euros to	o insta	ıll,
	insulation) or stu	d wall	400 kgCO2	'year							
	(mineral wool batt	s).									
External wall insulation	External wall insu	ulation	Savings of	up to	400	High	increase	in	High	cost	for
	involves fixing a la	ayer of	euros per	home	per	energy	efficie	ncy	installa	tion	-
	insulation mater	ial to	year			e.g. SAF	points		around	1	3,000
	the wall, then cove	ering it	Energy eff	ciency	200-				euros to	o insta	ıll
	with a special ty	pe of	300 kgCO2	'year							
	render (plasterwo	rk) or									
	cladding. The finis	sh can									
	be smooth, tex	ctured,									

	painted, tiled, panelled,			
	pebble-dashed, or			
	finished with brick slips.			
Virgin loft insulation	300mm of rock wool roll	Savings of up to 100	Increase in energy	Occupant
		euros per home per	efficiency e.g. SAP	belongings in loft
		year.	points.	space.
		5-10% reduction in	Occupant comfort	Instances where
		energy consumption	improved.	no loft hatch
				present.
Loft insulation top up	Add to existing	Savings of up to 100	Increase in energy	Occupant
	insulation up to 300mm	euros per home per	efficiency e.g. SAP	belongings in loft
	of rock wool.	year.	points	space.
		5-10% reduction in	Occupant comfort	Existing insulation
		energy consumption	improved.	may be defective.
				Instances where
				no loft hatch
				present.
Single glazed windows to	Single glazed units,	Reduced heat loss -	Increase in energy	Planning
double	often wooden, replaced	windows/doors make	efficiency e.g. SAP	restrictions
	with UPVC units.	up 40% of heat loss.	points	High relative cost

			Occupant comfort	
			improved.	
Single glazed doors to	Single glazed units,	Reduced heat loss -	Increase in energy	High relative cost
double	often wooden, replaced	windows/doors make	efficiency e.g. SAP	
	with UPVC units.	up 40% of heat loss.	points	
			Occupant comfort	
			improved.	
Single glazed windows to	Single glazed units,	Reduced heat loss -	Increase in energy	Planning
triple	often wooden, replaced	windows/doors make	efficiency e.g. SAP	restrictions
	with UPVC units.	up 40% of heat loss.	points	High relative cost
			Occupant comfort	
			improved.	
Single glazed doors to	Single glazed units,	Reduced heat loss -	Increase in energy	High relative cost
triple	often wooden, replaced	windows/doors make	efficiency e.g. SAP	
	with UPVC units.	up 40% of heat loss.	points	
			Occupant comfort	
			improved.	
Upgrade of double glazing	New double glazed units	Reduced heat loss -	Increase in energy	Less efficient than
	installed. Thermal	windows/doors make	efficiency e.g. SAP	triple glazing
	efficiency restored by	up 40% of heat loss.	points	

	upgrading argon gas in		Occupant comfort	
	between panes and		improved.	
	resealing units.			
Upgrade heating controls	Providing occupants	More control allows	More efficient use	Data protection
	with more area based	occupants to heat	of heating system	(Switchee sensors)
	control over heating.	rooms more	and more control to	Compatibility with
	E.g. thermostatic	efficiently. Unused	end user.	existing systems
	radiator valves, portable	rooms can be heated	Increase in energy	and access to Wifi
	room thermostats.	less intensively to	efficiency e.g. SAP	
	Also updated with smart	make savings	points.	
	heating controls such as		Smart thermostat	
	Switchee.		can be used to test	
			boilers leading into	
			colder months.	
Hot water cylinder	Insulation jacket (80mm)	Reduced heat loss	Cheap measure for	None
insulation	wrapped around hot	from hot water stores.	reasonable	
	water cylinder.		efficiency increase.	
			High increase in	
			energy efficiency	
			e.g. SAP points	

New boiler upgrade	Replacing boilers with	Greater efficiency per	Consistent heating	Disruptive if new
	newer, more efficient	kWh meaning lower	throughout home.	radiators required.
	models (preferably A-	energy bills	Reduced	
	rated). Usually along		maintenance costs.	
	with upgraded settings		Better controls for	
	(TRVs etc.)		occupants to	
			manage usage.	
Gas central heating	Replacing inefficient	Cheaper fuel source	Reduced energy bills	Gas heating not in
upgrade	heating systems	and access or	and usually less	line with future
	(electric storage, LPG,	heating/hot water	issues with settings	proofing homes.
	etc.) with gas combi	from one system.	as population are	Potential need for
	boilers	Significant	familiar with usage.	new gas
		improvement in SAP		infrastructure to
		rating depending on		external of
		system replaced.		building which
				pushes up cost.
Floor insulation	Insulating suspended	Reduced heat loss	Reduced energy	Cost of measure is
	floors using Q-bot.	through floor space.	bills, comfortable	high in relation to
	Remote controls device	Increased SAP rating.	living space and	SAP increase.
	that sprays material	Up to 16% reduction in	improved SAP.	Approx. 6000

V₁ | April 29 2020

	upwards, insulating the	carbon usage.		euros for 1-2 SAP
	void.			point increase.
Roof insulation (room in	Insulating lofts used as	Significant savings in	Occupant comfort is	Measure can be
roof)	habitable rooms.	carbon and on energy	improved	complicated and is
		bills.	significantly.	fairly disruptive to
		Saving 500-700	Improved SAP	occupant.
		kgCO2/year depending	ratings.	
		on property type.		
Solar PV	Solar photovoltaic	Potential to offset	Significant increase	Planning
	panels installed on roof	electricity costs	in SAP ratings.	restrictions.
	space.	significantly.	Costs now more	Seasonal
	Electrical current fed		reasonable as more	effectiveness
	into building services		installers in	Occupants that are
	and appliances via an		industry.	out during the day
	inverter.			cannot use energy
				without added
				battery installation
				which doubles
				cost.
Solar thermal	Solar panel that heats	Potential to provide	Significant increase	Maintenance costs

	liquid dire	ectly	from	renewab	le	heating	in SAP r	atings		must	be
	sunlight, fe	eeding	into	which re	duce	s carbon	Costs	now	more	considered.	I.
	buildings	heating	g/hot	intensity	of bu	ilding.	reasona	able as	more		
	water syster	ns.					installe	rs	in		
							industry	/.			
Mechanical ventilation	Ventilation	syst	tems	Help	to	stabilise	Reduce	poten	tial for	High added	cost to
	powered	actively	by	airflow	and	d feed	conden	sation	/mould	retrofit proj	jects.
	electricity.			warmer		air	growth.			Occupants	known
				consiste	ntly	around	Increas	ed oc	cupant	to turn off	due to
				buildings	s – pi	reventing	comfort			noise.	
				isolated	cold a	ireas.				Increased	
				This can	reduc	ce energy				electricity u	sage.
				consump	tion.						
Solar gain (glazing)	Passive h	neating	of	Passive I	neat s	so south-	Natural	ly v	varmer	Risk of over	heating
	property -	solar po	ower	facing r	ooms	require	homes	in	colder	in s	summer
	enhanced	by wir	ndow	less heat	ing.		months			months.	
	area.			Reduced	C	ost of	Low-no	capita	l cost.		
	New develo	pments	can	utilities.							
	be desi	igned	to								
	incorporate	this.									

UFH low temperature flow	The low flow	This system allows	Warm homes at	Can be expensive
(underfloor heating).	temperature of UFH	boiler to operate at	cheaper cost.	to install. Must be
	(about 35°C) can allow a	98% efficiency,		installed by a
	boiler to operate at	compared to only 88%		specialist.
	higher efficiency.	with systems requiring		
		a higher flow		
		temperature, such as		
		radiators.		
Connections to heat	Heat networks provide a	Energy efficiency can	Can be more	More cost efficient
networks	central source of	vary depending on	efficient than	when installed at
	heating for multiple	type of heat network.	individual heating	new build stage
	dwellings	Communal ground	systems	
		source or air source		
		heat pumps likely to		
		be most efficient		
Weather compensators	Control function which	The warmer it is outside	Reduces energy	Not suitable for all
	maintains internal	the lower the flow	costs and carbon	heating systems.
	temperatures by varying	temperature, and that of	emissions	
	the flow temperature from	the heat emitter(s),		

	the heat generator relative	whilst still maintaining		
	to the measured outside	comfort conditions.		
	temperature			
Replacement Windo	w Replacement window	Replacement window	Reduces risk from	Slows down
surrounds	surrounds replaced to	surrounds improve air	asbestos in	replacement
	achieve better	tightness and increase	materials and	window
	insulation	energy efficiency	reduces draughts.	programmes due
				to asbestos checks
Efficient electric heati	ng Installation of	More efficient use of	New systems	Can be expensive
upgrades	innovative heating	fuel source and in	provide occupants	to end user if
	systems powered by	some cases considered	with state of the art	necessary fabric
	renewable energy	renewable.	heating controls.	measures are not
	sources and electricity.		Greater efficiency	included in
	For example -		and significant	project.
	ASHP/GSHP, high heat		improvements in	Will be more
	retention storage		SAP score and El	effective if/when
	heaters, etc.		score.	electricity
				production is
				decarbonised.

		Users are	often
		unfamiliar	with
		technology	which
		requires	good
		education a	as part
		of project.	

The list includes all measures being carried out by the partners. However not each measure was used by all partners.

Implementation

Broken down by the number of planned and implemented measures per partner, the table appears as follows:

Joint menu of	PP4	PP4	PP5	PP5	PP6/16	PP6/16	PP9	PP9	PP12	PP12	PP14	PP14
renovations	IEPER	IEPER	BTN	BTN	OPT	OPT	HAB	HAB	ZON	ZON	CLA	CLA
	Plan	Actual	Plan	Actual	Plan	Actual	Plan	Actual				

Upgrade lighting to LED			0	339	130	152	3	0			0	50
Draught			250	215					6	0		
proofing												
Cavity wall	24	0			4	6			6	0	0	50
insulation												
Internal wall											0	50
insulation												
External wall									6	0	8	8
insulation												
Virgin loft	22	22					6	6			8	8
insulation												
Loft insulation					5	5						
top up												
Single glazed	60	20							6	0	0	75
windows to												
double												
Single glazed					4	4						
doors to double												
Single glazed												

windows to												
triple												
Single glazed												
doors to triple												
Upgrade of					50	67	18	18				
double glazing												
Upgrade heating			250	239	20	26						
controls												
Weather			100	78								
compensators												
Hot water												
cylinder												
insulation												
New boiler	4	4	250	317	6	8			6	1		
upgrade												
Gas central					0	1			6	1	0	70
heating upgrade												
Floor insulation									6	0		
Roof insulation									6	0	8	8
(room in roof)												

V 1 | April 29 2020 20

Solar PV									8	8
Solar thermal										
Mechanical							6	0	8	8
ventilation										
Air source heat										
pumps										
Smart				100	100		6	1	8	8
thermostats										
Solar gain							6	0		
(glazing)										
UFH low										
temperature										
flow										
Connections to										
heat networks										
Weather		100	78							
compensators										
Replacement				50	67					
window										
surrounds										

V 1 | April 29 2020 21

Efficient electric			2	2			
heating							
upgrades							

V 1 | April 29 2020 22

Findings from comparisons of studies and renovations

Archetypes

There was minimal commonalty between the archetypes selected for renovation. Partners showed that although older properties were selected for the retrofits, the style of construction varied considerably between partners. Even within the selected districts of each partner, the range of different archetypes was significant. As part of Optivo's work for SHINE, a study of different archetypes was carried out in the St Leonards area in Hastings. The result showed that were 20 building archetypes in the area. See *Figure 1*.

Examples of building types are shown below.

Adamy, Habitat du Littoral

Damrémont, Habitat du Littoral

St Leonards, Optivo

Bellamy, Clavis

This experience meant that it was not easy for partners to compare works in specific archetypes. It was therefore decided that comparison of retrofits would be achieved by looking at the types of installations rather than the types of property.

Figure 1

Property Type	С	Property Type	С	Property Type	С	Property Type	С
BungalowCavityMai		HighRiseFlatCavityM		LowRiseFlatCavityM		TerraceMed/LargeC	
nsGas	No	ainsGas	No	ainsGas	Yes	avityMainsGas	Yes
ConvertedFlatCavit		HighRiseFlatSolidEle		LowRiseFlatSolidMa		TerraceSmallCavity	
yMainsGas	No	ctric	Yes	insGas	Yes	MainsGas	No
ConvertedFlatCavit		HighRiseFlatSolidMa		SemiCavityMainsGa		TerraceSmallCavity	
yMainsGas	Yes	insGas	Yes	S	No	MainsGas	Yes
ConvertedFlatSolid		HighRiseFlatSystem		SemiCavityMainsGa		TerraceSmallGranit	
MainsGas	Yes	MainsGas	No	S	Yes	eMainsGas	Yes
HighRiseFlatCavityE		LowRiseFlatCavityMa		TerraceMed/LargeC		TerraceSmallSolid	
lectric	Yes	insGas	No	avityMainsGas	No	MainsGas	Yes

25

Resident engagement

Most partners had similar approaches when it came to engaging with residents. These were as follows:

- Letters, emails and phone calls for initial contact
- Home visits
- Pre installation events and road shows for energy advice
- Resident liaison while the works were being carried out
- Post installation satisfaction surveys

All partners agreed that these approaches were integral to ensuring that behaviour change took place alongside the installations.

Residents meet the contractor at an event at Bristol Road Community House, St Leonards UK

Discussions between partners generated new ideas and information sharing. For example Optivo referred Zonnige Kempen to Brest, a partner on another Interreg NWE Project (CAN). Brest has been investing in a Bricobus, a vehicle that takes tools and building materials to residents so they can carry out their own minor renovations with some supportive training.

Monitoring and reporting

Most partners' deliverables are being monitored. The most common method is to use an Energy Performance Certificate (EPC). Whilst this was valuable on a district wide basis, comparisons between member countries were not possible as EPCs differ nationally. This is largely due the differences found in the way energy was rated within each property. 100% predicted usage will come from EPCs.

Early on in the project, the partners agreed to collect real energy use data from a minimum of 20% of properties involved in project. This involves collecting data based on real consumption figures rather than estimated figures that can be obtained from EPCs.

This data has been collected from comparative bill readings. For example, Brighton and Hove Council have a dedicated officer who will carry out these bill reading comparisons.

In terms of measuring other impacts in the home:

Optivo has installed smart thermostats called Switchees. The Switchee is a new smart thermostat designed for social housing organisations. Optivo has piloted 100 Switchee to monitor energy use, fuel poverty risk and condensation and mould risk. Readings have been taken for the following:

- Electricity use
- Temperature under and overheating
- Boiler operation
- Relative humidity
- Time to lose heat insulation performance

- Fuel poverty risk
- Condensation and mould risk

Zonnige Kempen has installed a similar product. A SMAPPEE (intelligent datalogger for energy consumption) has been installed in some homes using a wall socket.

Completing retrofit works

The approach to completing works was very different and rules varied country by country. A case study has been prepared for each partner in **Appendix A**.

In summary the approaches were as follows:

OMCW leper – Completed works on older properties in a conservation area. EPCs were carried out before and after energy retrofit works were completed. Roof insulation was a priority to reduce CO2 emissions. The aim of the investment was to achieve 45% energy savings and less heating costs. Works completed included boiler replacement, double glazing and loft insulation. Cavity wall insulation was planned but could not be completed for technical reasons. **(see case study 1)**

Brighton and Hove Council - A large number of smaller measures were completed on social housing in Brighton. Measures have included boiler replacements, weather compensators, heating controls, draft proofing and LED lighting. Using an existing contractor where a relationship already existed helped to avoid delays. A dedicated role was created to support resident behaviour change through the provision of energy advice visits. (see case study 2).

Optivo – In total 210 homes were given 'whole house' retrofits using a fabric first approach. Multiple measures were installed to improved homes in St. Leonards to the UK Government's target of EPC Band C. In addition 100 Switchee smart thermostats were also installed to help Optivo monitor conditions within homes to avoid cold and damp. Alongside this work, a study was carried out to identify the main archetypes in St Leonards. The Study found that 20 different archetypes existed within the SHINE project area. **(see case study 3)**

Habitat du Littoral - Three separate sites were involved in the SHINE project. These were Adamy, Faidherbe and Damremont. The project idea was to find the best possible option to optimize the heating systems and building fabric based on needs and potential to reduce tenants' charges. Measures installed included LED lighting, virgin loft insulation, meters at tower height and heating control upgrades.

Works were carried out on three different building archetypes. (see case study 4)

Zonnige Kempen – A selection of potential homes was made (older poorly insulated dwellings). Six homes were selected as examples in Seringenhof 40. Works have just started after some delays. A contractor to do the works was selected in January 2020. There were some timing issues with the start-up of the renovation in Seringenhof. The partner financing of the renovation was dependant on the VMSW (Vlaamse Maatschappij voor Sociaal Wonen). They have complex administrative procedures that take sometimes years to get through. On top of that there was a change in personnel at Zonnige Kempen which also not very helpful is to speed things up to meet the deadlines. **(see case study 5)**

Clavis - Eight dwellings in Bellamy were selected for the SHINE work. This was part of a bigger city wide renewal project. Net zero energy pilot at a cost of 100,000 euros each. Core stock is based on rentability. The works are designed to make the scheme affordable and to provide a return on the investment. Resident engagement is an important element of the project. Progress was been made on 95% of the works before the contractor went out of business. An alternative supplier has been sought to complete the works. (see case study 6)

Summary and conclusions

Partner findings:

a. Technical benefits and issues, differences between partner countries

There were benefits for project partners to share technical information and best practice. Sharing ideas and practices at Partner meetings has proven to be helpful for each partner to complete their own works. Differences between regional governance and local funding support were highlighted by the project partners which made it difficult to draw direct comparisons. All partner countries had a different way of completing EPCs which made it difficult to compare sets of energy data.

b. Optimum model for the best approach to renovations

Each partner country completed work on different archetypes and it was agreed that partners would assess the benefit of the actions based on type of measures rather than by archetype. The most commonly adopted measures between the WP4 partners were: LED lighting, cavity wall insulation, loft insulation, heating controls and boiler upgrades.

c. How SHINE will inform future work

The project has set new standards for future renovation programmes For OCMW leper. a new Flemish standard will set higher standards for future renovations with a new energy policy from social services. In Brighton and Hove, the SHINE work has widened the thinking on future options e.g. district heat networks. Learning from the SHINE project has helped to streamline Optivo's ongoing retrofit programme in Kent and London. A further 130 retrofits have taken place in Kent based on the learning gained from

the SHINE project. Future 'whole house' retrofits are also planned in 2020/21 in the Kent and London area. For Habitat du Littoral, the work has helped to find the best possible option to optimize the heating system based on needs and potential to reduce tenants' charges. Zonnige Kempen found that there were able to a focus on behaviour change and well-being through the project. Clavis found that learning from residential and technical gains was useful and felt that resident engagement is a key part of the work.

d. Partner successes from SHINE retrofits

OCMW leper found a solution to a difficult planning issue for a home in a conservation area. To avoid a visual problem with the appearance of the building, a replacement lintel that was made from metal was clad with wood to ensure the final appearance matched the style of the home. This satisfied the requirements of the local planners.

For Brighton and Hove an existing contractor/ supplier was used so established relationship led to buy in from technical staff and led to prioritising by BHCC. Buying direct from contractor/technical supplier meant that the retrofit team didn't need to get agreement for works. Tenants all wanted new boilers and the smart controls installed through the project have been well received due to the additional control function and the look of the thermostat/control. Internal role changes resulted in additional resources helped to achieve greater success as well as the 'green' agenda adopted by Brighton and Hove Council.

Optivo was able to retrofit 10 more homes than originally planned due to cost savings during the retrofit process. Learning from the CAN Interreg NWE project helped Optivo to streamline its approaches to retrofits in SHINE.

e. What barriers have you encountered?

OCMW leper selected some properties that are in a conservation area. Changes had to be made to account for local building styles due to planning rules. Renovations for cavity wall insulation could not be met due to technical issues.

In Brighton and Hove, the main difficulty came arranging appointments with residents and them being in at the time of the visit. This has impacted more on the home advice visits. The installation of weather compensators has not been possible in all cases due to the additional space requirements and also in high rises due access issues to install the external monitor.

The Optivo retrofit team found that access to some homes to finish the works proved difficult in some cases. Loft insulation works were hindered by residents not wanting to clear their roof spaces. The contractor required Optivo to conduct asbestos survey works on many of the properties where we were replacing windows or insulating walls and roofs. This caused some delays in completing the works and required window surrounds to be replaced. In a few cases asbestos removal was required. This process created additional costs that were not expected. There was some initial resistance from residents to the installation of 100 Switchee smart thermostats as the data measured include occupancy levels in the home. A signed GDPR agreement was needed from each resident before we could install the unit.

Zonnige Kempen has timing issues which created a barrier to implementing the start-up of the renovation in Seringenhof. For their own contribution in the financing of the renovation they depend on the VMSW (Vlaamse Maatschappij voor Sociaal Wonen). VMSW has complex administrative procedures that take sometimes years to get through. On top of that, Zonnige Kempen had a change in personnel which also not very helpful is to speed things up to meet the deadlines. The project required finding empty dwellings for moving the tenants. Attempts were made to find appropriate accommodation as close as possible to the project site so that the social connections between the

neighbours were not lost due to renovation. For more information see case study 5 in **Appendix A**.

Clavis found that because their Investment was based on scenario analysis, the return on the investment may be some time in the future. They are waiting for market value to go up to justify their investment. The pilot will show whether this approach is viable.

f. Feedback from residents

OCMW leper received feedback from residents that the investments really improved the quality of life and the work achieved warmer homes for less money.

Tenants in Brighton and Hove are happy with the results from the SHINE project. The Council has a dedicated energy advisory service to ensure that information and support is provided alongside the supply of equipment.

Optivo has received a 90% positive feedback on the use of Switchee smart thermostats in their homes. A resident survey was sent to Switchee users via the device. Optivo also provided an energy advice service alongside the retrofit programme.

Clavis used smart meters used to engage residents. A study on retrofits was carried out to ensure a sympathetic fit with local architecture. The aim was to create social awareness.

g. Links to other work packages

All partners found the resident engagement work that fed into WP1 was useful for engaging residents for actual energy efficiency works.

h. Links to other EU projects

Some energy retrofits have been completed for the Interreg NWE project CAN (Climate Active Neighbourhoods). This work helped Optivo to streamline the surveys and subsequent retrofit works in the SHINE project.

Connections have been made between SHINE and another EU funded projects. Optivo referred Zonnige Kempen to Brest, a partner on another Interreg NWE Project (CAN). Brest has been investing in a Bricobus, a vehicle that takes tools and building materials to residents so they can carry out their own minor renovations with some supportive training.

Appendix A - Partner Case Studies

Case Study 1. PP4 – OCMW leper

Outputs			
Renovations	Planned	Carried out	comment
Boiler replacements	4	4	Works completed
Double glazed windows	60	20	Should be completed by the end of the project
Loft insulation	22	ongoing	Should be completed by the end of the project
Cavity wall insulation	24	0	cavity wall insulation planned but not carried out because technically impossible

Start up: All properties owned by OCMW leper – no problems with access.

Options: The aim was to set the standard of renovation as high as possible.

Method: EPCs were carried out in older properties. Roof insulation was a priority to reduce CO2 emissions. The aim of the investment was to achieve 45% energy savings and less heating costs.

Conservation area: Some properties are in a conservation area. An example is given of where changes that to be made to account for local building styles. A replacement lintel made from metal was clad with wood to ensure the final appearance matched the style of the home.

Engagement with residents: Feedback was that the investments really improved the quality of life and the work achieved warmer homes for less money.

Monitoring: Energy consumption is being monitored after the investments have taken place. Preliminary data shows a drop in usage.

Barriers: The main issue was with the homes in the conservation areas.

Targets: Renovations due to be met except cavity wall insulation.

Spin offs: The project has set new standards for future renovation programmes A new Flemish standard will set higher standards for future renovations with a new energy policy from social services.

Case Study 2. PP5 – Brighton & Hove City Council

Outputs	Outputs										
Renovations	Planned	Carried out	Comment								
LED lighting	0	339									
Draft proofing	250	215	Includes chimney balloons, glazing film and secondary glazing								
Upgrade heating controls	250	239									
Weather compensators	100	78									
New Boiler upgrades	250	317									

Set up- Retrofits were limited to small measures. An existing contractor/ supplier was used so established relationship led to buy in from technical staff and led to prioritising by BHCC. It was decided to align many of the works to the planned boiler replacement programme as we have systems in place to plan and deliver these works including appointments making, we were also conscious that most householders would want an upgraded heating and hot water system so enhancements delivered through this route would be more easily delivered. The smart controls in particular have been well received due to the additional control and the look of the thermostat/control.

Options - Many of the renovations have been carried out alongside Brighton & Hove's planned boiler replacement programme, upgrading old inefficient gas boiler with highly efficient A rated condensing combi boilers (Worcester Bosch 30i).

Method- As part of the programme we have been completing enhancements through the following;

Installation of weather compensators which increase the efficiency of the boiler by an average of 3%, (78 of 100 installed to date). Installation of Worcester Bosch Easy controls. The smart internet connected heating and hot water thermostat gives householders better control. The smart control has the capacity to understand householders' presence and routines to more efficiently heat the home. (239 of 250 installed to date)

Both the above enhancements comply with the Boiler Plus legislation introduced in 2018 which aims to increase the efficiency of domestic boilers to a minimum of 92% ErP. This legislation was introduced to reduce carbon emissions in line with EU wide targets.

Renovations have also been carried out through draught proofing in homes. This draught proofing is made up of;

Draught excluders around front doors

Draught proofing around internal doors and window frames Chimney balloons

Secondary glazing film

The draught excluders were installed through a combination of home visits by our partner Brighton & Hove Energy Services Cooperative (BHESCO) and in 'Goody Bags' handed out to residents through 24 energy advice desks delivered across the city in 2019.

Barriers - There have been no significant barriers in delivering the project other than those encountered with carrying out any work in people's homes i.e. arranging appointments with residents and them being in at the time of the visit, this has impacted more on the BHESCO home advice visits. The installation of weather compensators has not been possible in all cases due to the additional space requirements and also in high rises due access issues to install the external monitor.

What helped- Internal role changes, green agenda in Council, buying from contractor/technical supplier, didn't need to get agreement for works, tenants all wanted new boilers, control of call outs for tenants.

Engagement with residents – Tenants are happy with the results. The Council has a dedicated energy advisory service to ensure that information and support is provided alongside the supply of

equipment.

Monitoring- Monitoring will take place through anecdotal feedback, bill readings, technical data and case studies.

Spin offs - Widened the thinking on future options e.g. district heat networks.

Case Study 3. PP6/PP16 - Optivo

Outputs			
Renovations	Planned	Carried out	Comment
LED lighting	130	152	
Cavity wall insulation	4	6	
Loft insulation top up	5	5	
Single glazed door to double	2	4	
Single glazed windows to double	50	67	
Upgrade heating controls	20	26	
Hot water cylinders	6	8	
New Boiler upgrades	0	1	
High efficiency electric heating	2	2	For off -gas properties
Window surrounds	50	67	

Set up- Optivo planned to carry out a fabric first 'whole house' approach to retrofitting its homes. The pilot scheme involved the selection of 200 homes in St. Leonards, East Sussex which required improvement to meet the UK Government's standard of EPC Band C

(RdSAP 69).

Options – It was decided to take a 'fabric first' approach to the retrofits so that the energy improvements were made to the building with heating equipment being a secondary factor in the retrofit works.

Method- In order to obtain the baseline energy rating for each home, around 480 properties received technical energy surveys to determine whether the work was required and to decide the types of measures necessary to reach the standard. A consultant called CIS (Climate Integrated Solutions) was appointed to carry out the surveys and measures were selected for investment. CIS also carried out work on different archetypes in St Leonards and produced a table of 22 different property types.

Optivo selected Engie as the contractor who were required to carry out energy efficiency retrofits on a minimum of 200 of our worst performing homes in St Leonards. Optivo residents in the selected homes were sent a letter to introduce the appointed contractor and to tell them about pre-installation surveys which commenced in May 2018.

Overall 210 homes were improved up to EPC band C through multiple measures being completed to the homes.

Barriers - Access to some homes to finish the works proved difficult in some cases. Loft insulation works were hindered by residents not wanting to clear their roof spaces. The contractor required Optivo to conduct asbestos survey works on many of the properties where we were replacing windows or insulating walls and roofs. This caused some delays in completing the works. In a few cases asbestos removal was required. This process created additional costs that were not expected.

There was some initial resistance from residents to the installation of 100 Switchee smart thermostats as the data measured include occupancy levels in the home. A signed GDPR agreement was needed from each resident before we could install the unit.

What helped- Some energy retrofits have been completed for the Interreg NWE project CAN (Climate Active Neighbourhoods). This work helped Optivo to streamline the surveys and subsequent retrofit works in the SHINE project.

Engagement with residents – A resident engagement event was held at a community house in St Leonards to explain to Optivo residents what the work would entail. They were able to ask questions directly to Engie, who were installing the renovation works.

Monitoring - 'Before' and 'after' EPCs were carried out on the properties and the energy rating uplift was measured in RdSAP points. CO2 emissions were also measured based on the Environment Index data on the EPCs. Switchee smart thermostats were installed to measure the temperature, humidity and occupancy of the homes involved.

Spin offs – A further 130 retrofits have taken place in Kent based on the learning gained from the SHINE project. Future 'whole house' retrofits are also planned in 2020/21 in the Kent and London area.

Case Study 4. PP9 – Habitat du Littoral

Habitat du Littoral conducted works over three different sites. These were Faidherbe, Adamy and Damremont. Reports for each area are shown below.

Outputs			
Renovations	Planned	Carried out	comment
LED Lighting	LED lighting in shared area of DAMREMONT (18 floors)	0	Due Spring 2021
Virgin roof insulation	6	6	Completed September 2019
Heating controls upgrade	18	18	Completed June 2018
Meter at tower level	1	1	Completed in 2020

SHINE 1: FAIDHERBE

New lifestyle in a renovation project

1. Identification of the energy saving measure

Work Package	4 – Investment
Type of measure	Taking into account new lifestyles in
	renovation projects
Description	In forty years' time there has been huge lifestyle changes. The size of families is smaller though new stepfamily are more and more common, and the need of surface per resident increased (from 20 m2 per person to 40 m2 per person). Young adult tend to remain with their parents or decide to live together (house sharing). Those considerations should be taken into account in any retrofitting project which has an impact on room sizes, development of shared areas and use of every potential to optimize to use of housing in a flexible way.
Year of	2017
implementation	

2. Identification of the pilot building

2.1 General overview

OWNER OF THE	Habitat du Littoral
BUILDING	
COUNTRY	France
ADDRESS OF THE	67 rue Faidherbe
BUILDING	62200 BOULOGNE-SUR-MER
INDIVIDUAL /	Collective
COLLECTIVE	
YEAR OF	2020
CONSTRUCTION	
NUMBER OF STORIES	1
NUMBER OF	12
DWELLINGS	
NUMBER OF	26

INHABITANTS	
ENERGY CARRIER FOR	gas
HEATING	

2.2 Building description

TYPOLOGY	Low rise apar	tment block	
CONDITIONED	4 1264.18 m ²		
FLOOR AREA			
NUMBER AND SIZE	ROOMS	SURFACE	NUMBER
OF DWELLINGS	T5	114.82	3
	T2	48.40	7
CONSTRUCTIVE TYPOLOGY	Prefab wood f	frame walls	
WALLS TYPOLOGY	INSULATION	From the inside	5
	INSULATION	Glass wool	
	MATERIAL		
	TIGHTNESS	14.5	
	EXTERIOR	non	
	TRIM		
CELLAR, BASEMENT	INSULATION	NOT CONCERN	ED
	INSULATION		
	MATERIAL		
	TIGHTNESS		
TYPE OF ROOF,	INSULATION	Top of housing	
TERRACES	INSULATION	Glass wool	
	MATERIAL		
	TIGHTNESS	24	
TYPE OF WINDOWS	GLAZING	4+16+4	
		Window installe	
		the wooden ins	sulation
	FRAME	wood	

2.3 Previous refurbishments

YEAR TYPE OF PART OF THE DESCRIPTION	
--------------------------------------	--

	WORK	BUILDING	
		IMPACTED	
NOT CONCERN	IED		

2.4 Building equipment

2.4.1 Heating

ENERGY	Gas
DISTRIBUTION	Individual
PRODUCTION	Condensing boiler
EMISSION	Radiators
MONITORING	Thermostatic valves
REMARKS	Energy performance rated B 63 Kwh/m2/year

HEATING EQUIPMENT	
NAME, BRAND	Sony Duval
TYPE	Low temperature boiler
START UP DATE	2017
POWER kW	24

2.4.2 Domestic hot water

ENERGY CARRIER	Gas
DISTRIBUTION	Individual
PRODUCTION	Condensing boiler

EQUIPMENT PRODUCTION	
NAME, BRAND	Sony Duval
START UP DATE	2017
POWER kW	24
TANK VOLUME	3L each (12) – micro accumulation

2.4.3 Ventilation

TYPE	Hygro b mechanical controlled ventilation
NAME, BRAND	Atlantic

SHINE 2: ADAMY

1. Identification of the energy saving measure

Work Package	4 – Investment	
Type of measure	Improved Heating System	
Description	The idea was to find the best possible option to optimize the heating system based on needs and potential to reduce tenants' charges.	
Year of	2017	
implementation		

2. Identification of the pilot building

2.1 General overview

OWNER OF THE	Habitat du Littoral
BUILDING	
COUNTRY	France
ADDRESS OF THE	11-18 Cour Adamy
BUILDING	43 rue Felix Adam
	3-5 rue Hernest Hamy
	62200 BOULOGNE-SUR-MER
	FRANCE
INDIVIDUAL /	Collective
COLLECTIVE	
YEAR OF	1992
CONSTRUCTION	
NUMBER OF STORIES	3
NUMBER OF	54
DWELLINGS	
NUMBER OF	118
INHABITANTS	
ENERGY CARRIER FOR	Gaz
HEATING	

2.2 Building description

TYPOLOGY	Low rise apartment block			
CONDITIONED	4 203 m ²			
FLOOR AREA				
NUMBER AND SIZE	ROOMS	SURFACE	NUMBER	
OF DWELLINGS	T2	Between 56	7	
		and 58 m2		
	T3	Between 61	27	
		and 87 m2		
	T4	Between 81	20	
		and 106 m2		
CONSTRUCTIVE				
TYPOLOGY				
WALLS TYPOLOGY			rnal isolation	
	INSULATION	Plastered bowl and expanded		
	MATERIAL	polystyrene bowl TH38		
	TIGHTNESS	13+40		
	INSULATION	ON collage		
	TECHNIC			
CELLAR, BASEMENT	INSULATION	Of soffits and arcs		
	INSULATION	Projected wool		
	MATERIAL			
	TIGHTNESS	30		
TYPE OF ROOF,	INSULATION	Loft insulation		
TERRACES	INSULATION	Glass wool		
	MATERIAL			
	TIGHTNESS	30		
TYPE OF WINDOWS	GLAZING	Double glazing 4	1/12/4	
	FRAME	PVC		

2.3 Previous refurbishments

YEAR	TYPE OF WORK	PART OF THE	DESCRIPTION
		BUILDING	
		IMPACTED	
2016	Basement	Cellar	See above

insulation		
------------	--	--

2.4 Building equipment

2.4.1 Heating

ENERGY	Gaz	
DISTRIBUTION	Collective	
PRODUCTION	Low temperature boiler	
EMISSION	Radiators	
MONITORING	Thermostatic valves	

HEATING EQUIPMENT	
NAME, BRAND ATLANTIC	
TYPE Low temperature boiler	
START UP DATE 2017	
POWER kW 2*140	

2.4.2 Domestic hot water

ENERGY CARRIER	gaz
DISTRIBUTION	collective
PRODUCTION	boiler

EQUIPMENT PRODUCTION		
NAME, BRAND VARMAX		
TYPE Low temperature		
START UP DATE	2017	
POWER kW 2*140		
TANK VOLUME Instantaneous		

2.4.3 Ventilation

DISTRIBUTION	Collective
TYPE	Box in Attic
NAME, BRAND	ALDES
DESCRIPTION	Self-adjustable

2.4.4 Building consumptions before and after

YEAR		2017	2018	2019
HEATING	In	323	249	250
WATER	MWh	158	151	143

SHINE 3: DAMREMONT

Prioritize energy retrofitting measures in a complex building

1. Identification of the energy saving measure

Work Package	4 – Investment	
Type of measure	Priorization of renovation measures when	
	there is a wide range of constraints	
Description		
V		
Year of	On going	
implementation		

2. Identification of the pilot building

2.1 General overview

OWNER OF THE	Habitat du Littoral
BUILDING	
COUNTRY	France
ADDRESS OF THE	4 rue Colonel de l'Espérance
BUILDING	62200 BOULOGNE-SUR-MER
INDIVIDUAL /	Collective
COLLECTIVE	

YEAR OF	1973
CONSTRUCTION	
NUMBER OF STORIES	18
NUMBER OF	146
DWELLINGS	
NUMBER OF	220
INHABITANTS	
ENERGY CARRIER FOR	DALKIA (DHC)
HEATING	

2.2 Building description

TYPOLOGY	High rise apartment block			
CONDITIONED	10 443 m2			
FLOOR AREA				
NUMBER AND SIZE	ROOMS	SURFACE	NUMBER	
OF DWELLINGS	T1		12	
	T2		53	
	T3		62	
	T4		19	
CONSTRUCTIVE	Reinforced co	oncrete building		
TYPOLOGY	And concrete	panels		
WALLS TYPOLOGY	INSULATION	Insulating conc	rete	
	INSULATION	Béton armé + plaques en		
	MATERIAL	polyester		
		Béton Armé + grès Cérame		
		Maçonnerie		
		Béton armé		
	TIGHTNESS			
	EXTERIOR	Air gap and metal siding		
	TRIM			
	INSULATION	External thermal insulation		
	TECHNIC			
CELLAR, BASEMENT	INSULATION	None, down to earth concrete		
	TIGHTNESS	20		
TYPE OF ROOF,	INSULATION	polyurethane		
TERRACES	INSULATION	Reinforced concrete (for all		
	MATERIAL	roofs except the terrace on		
		basement) + polyurethane +		
		macadam + gra	vel	

	TIGHTNESS	BA 0.15 densité 375 kgs/m2 10
TYPE OF WINDOWS	GLAZING	Double glazing
	FRAME	Wood and foil

2.3 Previous refurbishments

YEAR	TYPE OF WORK	PART OF THE BUILDING	DESCRIPTION
		IMPACTED	
1995	Thermal	Outdoor walls	
	insulation		
2015	Connection to	Boilers	DHC with
	DHC		renewable
			energy
From 2009	maintenance		
to 2014			

2.4 Building equipment 2.4.1 Heating

ENERGY	Gas and biomass (DHC)	
DISTRIBUTION	Collective (colonnes montantes)	
PRODUCTION	Substation connected to DHC	
EMISSION	Radiators	
MONITORING	Thermostatic valves + regulation globale en	
	function de la temperature extérieure	
REMARKS		

HEATING EQUIPMENT (collective connected to DHC)		
	POWER kW/h	91

2.4.2 Domestic hot water

ENERGY CARRIER	DALKIA

EQUIPMENT PRODUCTION	
POWER kW/h	26

2.4.3 Ventilation

DISTRIBUTION	Collective
TYPE	VMC Collective Controllée Collective Simple
	Flux Autoréglable

Case Study 5. PP12 – Zonnige Kempen

Outputs		
Renovations	Planned	Carried out
Draught proofing	6	0
Cavity wall insulation	6	0
External wall insulation	6	0
Upgrade of double glazing	6	0
New boiler upgrade	1	5
Gas central heating upgrade	1	5
Floor insulation	6	0
Roof insulation (room in roof)	6	0
Mechanical ventilation	6	0
Smart thermostats	1	5
Solar gain (glazing)	6	0

Set up - A selection of potential homes was made (older poorly insulated dwellings). Six homes were selected as examples in Seringenhof 40. Works have just started after some delays. A contractor to do the works was selected in January 2020.

Options - The plan is to renovate the homes from the outside.

Method - Time consuming to move people - barrier, expensive, lost rent, year empty, communicate this to the tenants, difficult to convey why they should empty.

Monitoring - For installation of a SMAPPEE (intelligent datalogger for energy consumption) using a wall socket. EPCs are to be carried out before and after the works are completed. There will be a focus on behaviour change and well-being.

Barriers - There were some timing issues with the start-up of the renovation in Seringenhof. For their contribution in the financing of the

renovation they depend on the VMSW (Vlaamse Maatschappij voor Sociaal Wonen). VMSW has complex administrative procedures that take sometimes years to get through. On top of that Zonnige Kempen had a change in personnel which also not very helpful is to speed things up to meet the deadlines.

Other issues besides the administrative struggle at VMSW:

- Finding empty dwellings for moving the tenants. They tried to find appropriate accommodation as close as possible so that the social connections between the neighbours are not lost due to renovation.
- The cost (money as well as the time investment) is an issue were they are looking for alternatives. In another project ENLEB, we are experimenting if it is possible to insulate the outer shell of the dwelling (roof, walls, windows and doors) without relocating tenants.
- The electricity company has fused and changed names therefore the permission they had from the tenants to ask the data of their energy consumption is no longer valid and the work that has been done needs to be done again.
- For installation of a SMAPPEE (intelligent datalogger for energy consumption) a wall socket is needed. Not installed at an accessible place in the older dwellings.

Things that helped - They have just recently started so the issues or building problems are still few.

Spin offs - N/A

Case Study 6. PP14 - Clavis

Outputs		
Renovations	Planned	Carried out
Upgrade lighting to LED	0	50
Cavity wall insulation	0	50
Internal wall insulation	0	50
External wall insulation	8	8
Virgin loft insulation	8	8
Upgrade of double glazing	0	75

Gas central heating upgrade	0	70
Roof insulation (room in roof)	8	8
Solar PV	8	8
Mechanical ventilation	8	8
Smart thermostats	8	8

Set up - Core stock is based on rentability. The works are designed to make the scheme affordable and to provide a return on the investment.

Options - Eight dwellings in Bellamy were selected for the SHINE work. This was part of a bigger city wide renewal project. Net zero energy pilot at a cost of 100,000 euros each.

Engagement – Smart meters used to engage residents. Study on retrofits being carried out to ensure a sympathetic fit with local architecture. The aim is to create social awareness.

Barriers – Investment based on scenario analysis. Waiting for market value to go up to justify investment. The pilot will show whether this approach is viable.

Monitoring - Smart meters are being used to monitor energy costs.

Spin offs – Learning from residential and technical gains. Resident engagement is a key part of the work.

Project partners

