
1

Demand-Responsive
Transport to ensure
accessibility, availability 
and reliability of rural 
public transport

31/12/2021
Project nr. #R101
(Interreg Baltic Sea Region)

Aalborg University
Dept. of Computer Science

Authors:
Kristian Torp
Magnus N. Hansen

REGIONAL WORKSHOP 
ON OPEN DATA 
DEVELOPMENT FOR 
PUBLIC AUTHORITIES
Output I2.4



                                  response-project.eu 2                      

Table of Content

 1

1 SUMMARYY 3

2 APII OVERVIEWW 3

2.1 API SUBPARTS 4
2.2 OUTPUTT FORMATS 5
2.3 LEVELL OFF INFORMATION 6

3 TRAVELL TIMEE RESTFULL APII ENDPOINTSS 6

4 STRICT-PATHH QUERYY RESTFULL APII ENDPOINTSS 11

5 TRAJECTORYY METADATAA RESTFULL APII ENDPOINTSS 13

6 SEGMENTT INFORMATIONN RESTFULL APII ENDPOINTSS 15

7 MASTERR DATAA MANAGEMENTT ANDD SELF-GUIDEDD TUTORIALSS 16

8 CONCLUSIONN 16

9 REFERENCESS 17

APPENDIXX AA TECHNICALL OVERVIEWW OFF THEE RESTFULL APII 18

APPENDIXX BB JYPUTERR NOTEBOOKK GENERALL APII USAGEE 21

APPENDIXX CC JYPUTERR TRAVELL TIMEE INN INTERSECTIONSS 35



                                  response-project.eu 3                      

1 Summary
This report describes how the data warehouse developed for GPS data in report O2.1 of the 
RESPONSE project can be used to show how data can be used to solve common challenges in the 
transport sector. The focus is on the two Key Performance Indicators (KPIs) travel-time and fuel 
consumption. In addition, there are several additional information that can be extracted at the 
segment level and a route level.

The report focuses on using the data accessible via the RESTful API developed in the RESPONSE 
report O2.1. The full API is publicly available via the website https://mapapi.cs.aau.dk. To be able 
to use the data extracted from the RESTful API several different output formats are supported, 
including Microsoft Excel and the very widely used CSV file format.

2 API Overview
The landing (or main) page of the RESTful API is shown in Figure 1. This web page is built using 
only open-source software products such as the PostgreSQL database [1] for data storage, the 
Python [2] programming language for application logic, and the RESTFul [3] API documentation 
tool Swagger UI [4].

The API provides a web-based graphical user interface to use the developed RESTful API while at 
the same time allowing IT professionals to query the API using two standard tools for querying 
websites (using a URL via the HTTPS protocol or the curl [5] [6]command-line tool available on all 
major operating systems, i.e., Linux, macOS, and Windows).

Figure 1 RESTful API Front Page (https://mapapi.cs.aau.dk)

The RESTful API is accessible from most, if not all web browsers, such as Apple Safari, Google 
Chrome, Microsoft Edge, and Mozilla Firefox.



                                  response-project.eu 4                      

2.1 API Subparts
The RESTful API is split into several functional subparts based on the information that they provide 
access to. The splitting of the API also makes it possible to restrict access to the subparts. Further, 
the smaller subparts make the API easier to understand by the users. The overview of the API 
subparts is shown in Figure 2. Here the subparts are illustrated by collapsing the information on 
the individual API endpoints shown in Figure 1.

Figure 2 The RESTful API Subparts on the 

The five parts of the API are the following

Travel time (public) provides access to various routing information, e.g., point-to-point 
travel time and isochrone information.
Map Information (login) provides access to the underlying OpenStreetMap (OSM) [7]
digital map in general.
Strict-path queries (login) provide access to GPDR complaint information on GPS data
Trajectory metadata (login) provides access to details of individual trajectories.
Segment information (login) provides access to the details of the digital map at the most 
detailed level, which is at the segment level.



                                  response-project.eu 5                      

The travel-time subpart of the RESTful API is available to the public. The four other subparts are 
only available to API users that are logged in. This is indicated by the (public) and (login) notations, 
respectively. Each subpart is explained in more detail later in this report.

2.2 Output Formats
For the data extracted from the RESTful API to be useful in the organization that uses the API, the 
data must be available in several different formats. In this section, we provided an overview of 
these output formats.

The user can specify the output format by using the format parameter shown as the first parameter 
in Figure 3. Here the output format is the widely used JSON format. The user can change the output 
format by picking a from a dropdown list (not shown in Figure 3).

Figure 3 Specifying the Output Format

The API supports four different output formats. Not all formats are relevant for all API endpoints. 
The output formats supported are the following.

JSON [8] is a widely used data format in a web context. If the output produced is a 
geometry, e.g., a point, linestring, or a polygon, the specialized GeoJSON format is used. 
The GeoJSON format makes it very simple to visualize the geometries extracted in a broad 
range of both open-source and commercial GIS software products.
CSV [6] is a Comma-Separated Values text file. The CSV format is widely used for data 
exchange and makes it simple to import the data extracted from the API into existing 
databases.
XSLX is the Microsoft Excel format. This makes it possible for API users to experiment with 
the visualization of the data. The Excel format is very widely used for data analysis in many 
public and private organizations.
Handsontable is a format for displaying tabular data directly in a web browser. An example 
is shown in Figure 4 where the result of a RESTful API call is shown directly in a web browser 
window. This format makes it convenient to experiment with the API.

Figure 4 The handontable Output Format shown in Web Browser



                                  response-project.eu 6                      

2.3 Level of Information
A huge challenge in designing an API that is based on GPS data is the GDPR rules. A user of the 
API has an interest in getting as much information as possible while the GDPR rules clearly state 
that individuals have a right to privacy. 

To provide as much relevant information to a user, the API can provide information at multiple 
levels.

At a GPS point level, there is access to the first and last GPS record on a single segment, 
if there are at least 11 or more vehicles. However, a user cannot combine GPS points from 
multiple segments as the temporal information is provided minimum at a 15 minutes 
interval.
At a segment level, the travel time and fuel consumption estimates are available. This 
makes it possible to build additional services on top of the API. Also because the API can be 
accessed via a programming language, i.e., extraction can be automated.
At a route level, the travel time and fuel consumption estimates are available. The benefit 
is that a user can get a combined result for the travel on multiple, consecutive road 
segments. This is convenient as the user does not need to combine the multiple segment-
level queries. It is also considered more accurate as turns are taken into consideration. This 
is not possible at the segment level.

3 Travel Time RESTful API Endpoints
The travel-time API endpoints provide access to high-level services that are widely used in the 
transportation industry. These services are all freely available via the internet as they do not return 
any personal information and therefore are fully GDPR compliant. The services cover all of Denmark, 
the Faroe Islands, and Sweden. An overview of the travel-time RESTful API endpoints is shown in 
Figure 5.

Figure 5 Travel Time RESTful API Endpoints

The result of using the routingTravelTime and ruralRoute endpoints is shown in Figure 6. Here a 
route starts at the needled labeled 1 the route ends at the Central Train Station, in Karlstad, 
Sweden. The addresses are visited in the order specified, i.e., first 1, then 2, then 3, and so on.
The travel time for the entire route is shown in Figure 6.



                                  response-project.eu 7                      

Figure 6 Result using the two Routing RESTful API Endpoints

The result of using the isochrone endpoint is shown in Figure 7. The isochrone center is in the 
Swedish town of Kumla. Each ring in isochrone represents 10 minutes of travel time, e.g., the 
yellow parts can be reached in 10 minutes, the green parts in 20 minutes, the red parts in 30 
minutes, and the blue parts in 40 minutes.

Figure 7 Result using the isochrone RESTful API Endpoint

#R101
The result of using the costMatrix endpoint is shown in Figure 8. The table at the bottom left shows 
the travel time between the numbered needles on the map. A cost matrix is a convenient way to 
present a larger number of travel times between multiple destinations. The map shows the area 
near Kalmar, Sweden.



                                  response-project.eu 8                      

Figure 8 Result using the costMatrix RESTful Endpoint

The result of using the travelingSalesPersonProblem endpoint is shown in Figure 9

The goal of the traveling salesperson problem is to find the fastest route that starts at the needle 
label 1 and then visits all the other needles, labeled 2 to 6, and then returns to the address at 
needle 1 again. The map shows the area near the city of Grenå, Denmark.

The routes to take is shown in the table in the lower right corner in Figure 10. For this example, 
the first leg of the journey is from needle 1 to needle 4, second from needle 4 to needle 5, third 
from needle 5 to needle 3, and on. 

The total travel time for visiting all needles is shown in Figure 10. Please note that the traveling 
salesperson is in a class of problems that only can be solved efficiently using heuristics.



                                  response-project.eu 9                      

Figure 9 The travelingSalesPersonProblem API Endpoint



                                  response-project.eu 10                      

Map Information RESTful API Endpoints

In the section, we describe the RESTful endpoints that provide access to the underlying map 
foundation. The purpose of these endpoints is simply access to basic map data that can provide 
useful insight to transportation authorities. A screenshot of the endpoints is shown in Figure 10.

Figure 10 Map Information RESTful API Endpoints

The screenshot shown in Figure 10 is a part of Figure 1. The user simply has to scroll down to 
access these endpoints.
All API endpoints are accessed similarly. An example of using the trafficCalming API endpoint is 
shown in Figure 11. In this example, all traffic calming on the road network in the Karlstad Area, 
Sweden.

Figure 11 Using the trafficCalming Endpoint



                                  response-project.eu 11                      

The result of the API endpoint call in Figure 11 is illustrated in Figure 12 using the PostgreSQL 
database. This shows that it is possible to integrate the data extracted from the RESTful API with 
other third-party software products such as the open-source software product QGIS [9] and 
pgAdmin [10].

Figure 12 Result of the Traffic Calming API Endpoint Call

4 Strict-Path Query RESTful API Endpoints
An overview of the strict-path query subpart of the RESTful API endpoints is shown in Figure 13. 
This part of the API provides access to detailed travel-time information and fuel consumption 
estimates on the parts of the road network where GPS data is available. Please note that to fulfill 
the GDPR rules it is not possible to extract information such that it is possible to identify individual 
drivers.

Figure 13 Strict-Path Query RESTful API Endpoints

An example of using the mostUsedRoute endpoint is shown in Figure 14. The request returns the 
most used route between two points. These two points are provided by the user in the parameters 
fromPoin and toPoint at the bottom of Figure 15. The format is JSON specified in the format
parameter. The user can specify several temporal filters using the days, fromdate, todate, 
fromtime, and totime.



                                  response-project.eu 12                      

Figure 14 Using the mostUsedRoute Endpoint

The result of the request specified in Figure 14 is shown in Figure 15 using the QGIS GIS system. 
The result is a GeoJSON string that can be visualized in many GIS products.



                                  response-project.eu 13                      

Figure 15 Result of mostUsedRoute Endpoint Displaying Most Used from Going Left to Right

5 Trajectory Metadata RESTful API Endpoints
An overview of the trajectory metadata API endpoints is shown in Figure 16. The endpoints provide 
information about trips (typically called trajectories).

Figure 16 Trajectory Metadata RESTful API Endpoints

An example of using the tripRoadCategories endpoint is shown in Figure 17. The endpoint returns 
the percentage usage of the road network, e.g., the percentages of the trips on motorways, trunk, 
or residential roads. The format is in this case the Excel format. The first five rows of the result of 
the request in Figure 16 are shown in Table 1. Because the Excel format allows the user to visualize 
the result in different fashions.



                                  response-project.eu 14                      

Figure 17 The tripRoadCategories Endpoint

Table 1 Usage of Road Network

date motorway trunk primary secondary tertiary residential misc
20140101 26.4 2.08 16.37 23.65 14.45 7.31 9.73
20140102 31.45 2.33 13.2 23.63 14.67 6.63 8.09
20140103 36.47 1.69 12.64 22.38 13.27 5.91 7.65
20140106 40.33 2.22 11.67 19.82 13.05 5.45 7.45
20140107 35.01 2.23 12.86 22.23 13.82 5.58 8.27



                                  response-project.eu 15                      

6 Segment Information RESTful API Endpoints
The set of segment information endpoints is shown in Figure 18. The endpoints provide information
related to road networks at the finest level of granularity of a single segment. This is typically the 
distance between two intersections. The endpoints focus on the two KPIs travel time and fuel 
consumption.

Figure 18 Segment Information RESTful API Endpoints

As an example, the segmentFuelConsumption endpoint provides information on the fuel 
consumption on a segment. An example of this is shown in Figure 19. Similarly, the segmentSpeed
endpoint provides information on the travel speed of a segment over the time of the day. An 
example is shown in Figure 20. The two examples, in Figure 19 and Figure 20 use the Excel output 
format. Directly from the file downloaded via the API, these graphs can be created.

Figure 19 Fuel Consumption over Time of Day Figure 20 Speed over Time of Day

0.032

0.034

0.036

0.038

0.04

0.042

0.044

0.046

05
:0

0
06

:1
5

07
:3

0
08

:4
5

10
:0

0
11

:1
5

12
:3

0
13

:4
5

15
:0

0
16

:1
5

17
:3

0
18

:4
5

20
:0

0

Fu
el

 C
on

su
m

pt
io

n 
(l)

Time of Day

0

10

20

30

40

50

60

70

80

90

100

05
:0

0
06

:1
5

07
:3

0
08

:4
5

10
:0

0
11

:1
5

12
:3

0
13

:4
5

15
:0

0
16

:1
5

17
:3

0
18

:4
5

20
:0

0

S
pe

ed
 (k

m
/h

)

Time of Day



                                  response-project.eu 16                      

7 Master Data Management and Self-Guided Tutorials
A master data management seminar aimed at providing an introduction to open data accessibility, 
formats, quality, and added values in terms of economic and environmental performance evaluation 
was conducted during the first consortium meeting. The slides are available online.

The planned regional workshops could not be done due to travel restrictions related to the Corona 
Virus pandemic. The regional workshops are replaced by the following online/offline material for 
self-study.

This report has been created to provide an overview of the functionality of the RESTful API. 
This report is targeted towards an audience that needs to have illustrated how open data 
can be used to support solving the challenges in the transport sector.
A technical report providing an overview of the complete API is listed in Appendix A. This 
document is ready for publication in a technical outlet. The target audience is IT developers 
in transport organizations, particularly outside the RESPONSE project.
A programmatic tutorial of the complete RESTful API using the Python programming 
language Is provided in Appendix B. The tutorial uses the very popular Jyputer Notebook 
framework that allows combining programming code and tables/figures. The tutorial is 
targeted towards a technical audience in a transports organization's IT department. 
A programmatic deep dive into computing travel times in intersections can be found in 
Appendix C. This tutorial builds on top of the first tutorial but is more detailed in solving a 
specific topic. The target audience is IT professionals in transportation organizations.
This tutorial builds on top of the first tutorial but is more detailed in solving a specific topic. 
The target audience is IT professionals in transportation organizations.

8 Conclusion
This report has focused on how geodata can be utilized to evaluate the performance of the service 
level, the cost-effectiveness, and the sustainability of mobility. A master-data management seminar 
was given to all RESPONSE partners. All data is accessed via a RESTful API.

The RESTful API is built on top of a data warehouse with data from transportation. The focus has 
been on the two important KPIs travel time and fuel consumption. These KPIs are relevant for most, 
if not all transportation organizations. The solution provided is general and can be used in any 
region or country within the EU. The set of minimum requirements for adding data to the data 
warehouse has been listed.

The report has provided a large number of examples of the outputs on maps or tables. This shows
that data can easily be presented in a manner that is understandable to both the public and 
decision-makers. The many examples of output from the RESTful API show that the two KPIs in 
focus (travel time/fuel consumption) can be easily presented on a map or integrated with other 
data in a transportation organization because the API supports a wide range of well-known output 
formats.

Due to the lockdown and travel restrictions related to the Coronavirus pandemic four planned 
seminars have been replaced by a) this report b) an online tutorial aim at developers, and c) two 
programming tutorials. All material is freely available for download. The tutorials are based on the 
widely used Jupyter Notebook technology.



                                  response-project.eu 17                      

9 References

[1] PostgreSQL, "PostgreSQL Homepage," [Online]. Available: https://www.postgresql.org/.

[2] Python, "Python Homepage," [Online]. Available: https://www.python.org/.

[3] "What is REST," REST API Tutorial , [Online]. Available: https://restfulapi.net/.

[4] Smartbear, "Swagger IO," [Online]. Available: https://swagger.io.

[5] T. C. Project, "curl://," [Online]. Available: https://curl.se/.

[6] Wikipedia, "Comma-separated values," [Online]. Available: 
https://en.wikipedia.org/wiki/Comma-separated_values.

[7] OpenStreetMap, "OpenStreetMap," [Online]. Available: https://www.openstreetmap.org/.

[8] ECMA-404, "ECMA-404 The JSON Data Interchange Standard.," [Online]. Available: 
https://www.json.org.

[9] QGIS, "QGIS Homepage," [Online]. Available: https://www.qgis.org.

[10] PGAdmin, "PGAmin Homepage," [Online]. Available: https://www.pgadmin.org/.



                                  response-project.eu 18                      

Appendix A Technical Overview of the RESTful API



A RESTFul API for GPS Trajectory Data Analysis
Magnus N. Hansen
Aalborg University

Dept. of Computer Science
Aalborg, Denmark
mnha@cs.aau.dk

Kristian Torp
Aalborg University

Dept. of Computer Science
Aalborg, Denmark
torp@cs.aau.dk

Abstract

High-frequent GPS data is being collected in very large quantities
from vehicles this allows for detailed travel-time studies of a se-
quence of road segments and also to estimate the fuel consumption.
In this paper, we present a novel RESTFul API where users can
query high-frequent GPS data at three different levels: a trajectory
level, a road segment level, and an individual GPS record level.
Further, the API provides two different fuel estimates derived from
the trajectory data. The tutorial shows how to use the RESTful API
to analyse traffic to, e.g., find problem with congestion, determine
the fuel consumption, or compute turn-times in intersections. Con-
crete examples related to the three levels trajectory, segment, and
point are presented. Results are available in multiple forms and it
is shown how to visual the CSV format result in Microsoft Excel.

CCS Concepts

• Information systems→ Information integration.

Keywords

trajectory, GPS, API, RESTFul, travel time, fuel estimate

ACM Reference Format:
Magnus N. Hansen and Kristian Torp. 2021. A RESTFul API for GPS Trajec-
tory Data Analysis. In Proceedings of . ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction

APIs from map/traffic-data vendors such as Google, HERE, and
TomTom are widely used by traffic planners in both the public and
private sector. With such APIs, it is possible to get information on
both single road segments and routing information from Point A
to Point B.

However, these APIs do not make it possible to get information
about the GPS records from a single vehicle that traverses a road
segment. Similarly, is travel-time information are from many differ-
ent vehicles and merged into a single value. This means that it is
not possible to examine the spread in travel-time on a single road
segment or know the ground-truth travel-time information on a
route, i.e., all vehicles have strictly followed the same route from
Point A to Point B without detours or stops (non-traffic related).

UN’s focus on reducing CO2 emissions makes it important know
about the fuel consumption on a route. Real fuel consumption from
vehicles is very hard to get access to therefore fuel estimates are

, ,
© 2021 Association for Computing Machinery.

good alternatives. As an example, Figure 1 shows the fastest route
(East-to-West) on a major road in Aalborg, Denmark.

Figure 1: Blue-Line Fastest Route
The distribution of the travel-time and fuel-consumption esti-

mates for each day in the week is shown in Figure 2. Both the travel
time and fuel consumption are lower during the weekend due to
lower traffic congestion.

On this 1216 meters long route, there is a total of 9436 trajec-
tories over two years. There is an average of 10.92 GPS points on
the first segment that is 135 meters long and has the OSM road
category secondary. On the last segment on the route shown in
Figure 1 the entry speed is on average 38.86 km/h. The minimum
and maximum entry speeds are 0 km/h and 79.00 km/h, respectively.
These numbers are all examples of data that can be extracted from
the API and that is demonstrated in the tutorial. The API [2] is
publicly available.

M
on

T
ue

W
ed

T
hu F
ri

Sa
t

Su
n

100

150

200

secs

(a) Travel Time (𝑠𝑒𝑐𝑠)

M
on

T
ue

W
ed

T
hu F
ri

Sa
t

Su
n

0.15

0.2

0.25

ml

(b) Fuel Estimate (𝑚𝑙 )

Figure 2: Boxplot for Data in Route in Figure 1

The API runs on top of a GPS trajectory data warehouse contain-
ing ∼1.5 billion GPS records (1Hz) from ∼1.35 million trajectories
recorded by ∼500 vehicles over two years.

In this paper, we provide an overview of the RESTFul API end-
points users can call and the results returned. In addition, we outline
the content of a presentation of the API. We briefly described the
data foundation and sums up the paper.

https://doi.org/10.1145/nnnnnnn.nnnnnnn


, , Magnus N. Hansen and Kristian Torp

2 RESTFul Endpoints

Examples of the endpoints in the RESTFul API are shown in Table 1.
The endpoints are divided into three groups: Single GPS Record
where users can query information from single GPS records, Single
Segment that provides information on a single segment, and Trajec-
tory where information is based on trajectories (or sub-trajectories).
Note that the information for endpoints is based on map-matched
high-frequent GPS data [5].
Endpoint Description

GPS Record
entrySpeed The entry speed on a segment
exitSpeed The exit speed on a segment

Segment
avgNoObservations Avg. number of GPS records on a segment
segmentSpeed Speed on a segment in 15/60 min. interval

Trajectory
spqTravelTimeList Travel time each trajectory on a route
spqFuelEstimateList Fuel estimation each trajectory on a route

Table 1: Examples of RESTFul Endpoints

The trajectory-based endpoints use strict-path queries (SPQ) [4].
This query type ensures that all trajectories returned, e.g., for the
spqTravelTimeList endpoint follow exactly the same route (sequence
of road segments) and only do traffic-related stops, e.g., at signalized
intersections. As an example, the spqTravelTimeList endpoint is used
to produce the graph in Figure 2a (data imported into Latex for
visualization).

The two fuel-estimation endpoints return two different estimates.
One using the Sidra-Trip estimation [1] and one using the Vehicle
Specific Power (SP) estimate [3]. The first estimate has the unitmL/s
the second estimate is without a unit. As an example, the Sidra-Trip
estimate produced by the endpoint spqFuelEstimateList is used to
produce the graph in Figure 2b.

The spatial and temporal parameters to the endpoints in Table 1
are listed in Table 2. Note that trajectory endpoints use two GPS
points parameters.
Parameter Description
point WGS-84 (lon, lat) point
from date The from date, a smartkey, e.g., 20190101
from date The to date, a smartkey, e.g., 20191231
days Bit strings of days, e.g., 1111100 for Monday-Friday
from time The from time, a smartkey, e.g., 0815
to-time The to time, a smartkey, e.g., 2359

Table 2: Overview Spatial/Temporal Parameters
3 Tutorial Outline

The tutorial is split into two parts: A 15 minutes general part and a
second 75 minutes hands-on part where the attendees solve various
specific tasks with the proposed RESTFul API based on a Jupyter
Notebook and Microsoft Excel. The audience is naturally able to
use the API from their computers.

3.1 Short Overview
The first part shortly introduced the concepts needed to work with
the API, e.g., when is it trajectory, segment, or point. The parts
covers.

• The map-matching of GPS records to a digital road network
• The idea behind the trajectory (strict-path queries) queries
• The conversion of GPS data to fuel-consumption estimates

3.2 Hands-On
The second part of the tutorial is hands-on, where several exercises
in a Jupyter Notebook demonstrate the various parts of the API to
the attendees. This includes how the API allows users to download
data, e.g., to visualize the result in a spreadsheet such as Microsoft
Excel or integration the result with other data sources.

The second part covers the topics.
• Documenting issues with congestion on single segments and
routes. Further, checking if the morning congestion level is
lower than the afternoon level?

• Examining the relation between travel speed and fuel con-
sumption

• Testing if the individual travel times on a segment/route
follow a normal distribution.

• Quantifying how travel time in an intersection is different
going left, right, or straight.

The Jupyter Notebook contains a number of exemplary examples
to be used as an outset. This includes the following.

• Routes with significantly different fuel estimates
• Routes with a different number of trajectories
• Segments with and without a rush hours on workdays

The second part contains examples where empty results are
returned due the EU’s strict GDPR rules. Further, we hope the
audience provides feedback on missing functionality in the API.

4 Summary

In this paper, we presented a novel set of RESTFul endpoints that
provides new capabilities to query GPS trajectory data. The API
allows users to access GPS data at three different levels: trajectory,
road segment, and GPS record. A major concern is retaining the
anonymity and privacy of the drivers. Therefore sparsely covered
areas cannot be queried. Similarly using strict-path queries means
that we can only provide results on routes where vehicles have
driven.
Acknowledgement

This work is supported by the EU Interreg RESPONSE project
response-project.eu.
References
[1] Rahmi Akçelik and Mark Besley. 2003. Operating cost, fuel consumption, and

emission models in aaSIDRA and aaMOTION. In CAITR 2003.
[2] Magnus N. Hansen and Kristian Torp. -. Daisy MapAPI. https://mapapi.cs.aau.dk/

apidocs/.
[3] JL Jimenez-Palacios. 1998. Understanding and quantifying motor vehicle emissions

with vehiclespecific power and TILDAS remote sensing. PhD thesis, Massachusetts
Institute of Technology.

[4] Benjamin Krogh, Nikos Pelekis, Yannis Theodoridis, and Kristian Torp. 2014. Path-
based Queries on Trajectory Data. In 22nd ACM SIGSPATIAL GIS.

[5] Paul Newson and John Krumm. 2009. Hidden Markov Map Matching Through
Noise and Sparseness. In 17th ACM SIGSPATIAL GIS.

https://response-project.eu/
https://mapapi.cs.aau.dk/apidocs/
https://mapapi.cs.aau.dk/apidocs/


                                  response-project.eu 21                      

Appendix B Jyputer Notebook General API Usage



MapAPI tutorial

Table of Contents:

Setup

Travel Time Data Endpoints

Crossings

Segment Details

Segments

Traffic Calming

Travel Time Model Endpoints

Costmatrix

Isochrone

Routing Travel Time

Rural Route

Trajectory Based Travel Time Endpoints

Average Number of Observations

Entry Speed

Exit Speed

Most Used Route

Segment Speed

spqFuelEstimate

spqFuelEstimateList

spqTravelTime

spqTravelTimeList

Setup

First we define the API url and the API key. Your key can be found at http://mapapi.cs.aau.dk/home when you're

logged in. Otherwise use this public key.

We define some example lat‑lon points to demonstrate the API.

In [1]: # Import requirements for later use 
import requests 
from matplotlib import pyplot as plt 
import pandas as pd 
import folium 

In [2]: api_url = 'https://mapapi.cs.aau.dk/api/v1/' 
key = 'WyIxIiwiJDUkcm91bmRzPTUzNTAwMCRDd3JSSjNmWkozUG9lOURuJEViTkJ3TnR6THRSV2J5Mnk4TzNqYlR

In [3]: # points used for querying later 
aalborg_university = '57.01755,9.97231' 
shopping_center = '57.00137,9.87148' 
horse_tracks = '57.0545,9.88105' 
airport = '57.08639,9.87259' 
harbor = '57.06002,9.95453' 
 

http://mapapi.cs.aau.dk/home


'55.5142,10.3988|55.41797,10.41913|55.07025,10.61826'

Travel Time Data Endpoints

Endpoints in this section contain data used for training some deep neural travel‑time models of the following

section.

We use the requests  module to query the API. The endpoint parameters are defined in a python dictionary.

You can check all the available parametern for each endpoint at https://mapapi.cs.aau.dk/apidocs/

Crossings

Returns all OSM crossings within a bounding box

aalborg = '57.04633,9.91902' 
viborg = '56.44781,9.39786' 
aarhus = '56.15058,10.20421' 
 
otterup = '55.5142,10.3988' 
odense = '55.41797,10.41913' 
svendborg = '55.07025,10.61826' 
 
e45_aalborg_tunnel = '57.0620805,9.9495412' 
e45_th_sauers_vej = '57.0197823,9.9602263' 
 
# areas for querying later 
copenhagen_area = {'point1': '55.6214,12.4084', 'point2': '55.7837,12.6185'} 
svendborg_area = {'point1': '55.0289,10.5216', 'point2': '55.0923,10.6415'} 
aalborg_area = {'point1': '57.0099,9.8695', 'point2': '57.0963,9.9912'} 

In [4]: # Some endpoints accept a sequence of lat­lons separated by the pipe­symbol 
# The lat­longs can be concatenated like this 
aalborg_locations = '|'.join([aalborg_university, shopping_center, horse_tracks, airport, 
jutland_route = '|'.join([aalborg, viborg, aarhus]) 
funen_route = '|'.join([otterup, odense, svendborg]) 
funen_route 

Out[4]:

In [5]: cr_params = { 
    'key': key, 
    'country_code': 'dk' 
} 
cr_params = {**cr_params, **svendborg_area} # join crossings parameters with point1 and po
cr_response = requests.get(api_url + 'crossings', cr_params) # make the request 
 
# We use module folium to display points and other geometry on a map 
m = folium.Map(location=[55.057119, 10.606324], zoom_start=12) # Create the map and set th
for crossing in cr_response.json()['results']: 
    folium.GeoJson(crossing['location']).add_to(m) 
m 

Out[5]: Make this Notebook Trusted to load map: File ‑> Trust Notebook+
−

https://mapapi.cs.aau.dk/apidocs/


All endpoints that return a geometry have a geometry  parameter, which either accepts 'geojson'  or 

'wkt'  as parameters. The default is 'geojson' .

[{'location': 'POINT(10.6170641 55.0874809)'}, 
 {'location': 'POINT(10.606893 55.0387745)'}, 
 {'location': 'POINT(10.6126892 55.042249)'}, 
 {'location': 'POINT(10.6293288 55.0717479)'}, 
 {'location': 'POINT(10.5941398 55.0579636)'}, 
 {'location': 'POINT(10.5890377 55.0499668)'}, 
 {'location': 'POINT(10.5896126 55.056361)'}, 
 {'location': 'POINT(10.6212044 55.0726581)'}, 
 {'location': 'POINT(10.6307935 55.0722924)'}, 
 {'location': 'POINT(10.6161897 55.0646431)'}]

Segment Details

OpenStreetMap metadata for the segment closest to a point

{'category': 'motorway', 
 'direction': 'FORWARD', 
 'geometry': {'coordinates': [[9.9494746, 57.0667182], 
   [9.9492564, 57.0662983], 
   [9.9490285, 57.0657448], 
   [9.9489453, 57.0654302], 
   [9.948853, 57.0648569], 
   [9.9488165, 57.0643828], 
   [9.9488522, 57.0638974], 
   [9.9489549, 57.0634161], 
   [9.9490952, 57.0629771], 
   [9.9493396, 57.0624284], 
   [9.9495482, 57.062063]], 
  'type': 'LineString'}, 
 'key': 532483, 
 'meters': 527, 

Leaflet (https://leafletjs.com) | Data by © OpenStreetMap (http://openstreetmap.org), under ODbL
(http://www.openstreetmap.org/copyright).

In [6]: cr_params = {**cr_params, **{'geometry': 'wkt'}}  # Same parameters but with the geometrie
cr_response = requests.get(api_url + 'crossings', cr_params) # make the request 
cr_response.json()['results'][:10] 

Out[6]:

In [7]: sd_params = { 
    'key': key, 
    'point': e45_aalborg_tunnel 
} 
 
sd_result = requests.get(api_url + 'segmentDetails', sd_params).json()['results'][0] 
sd_result 

Out[7]:

https://leafletjs.com/
http://openstreetmap.org/
http://www.openstreetmap.org/copyright


 'name': 'Nordjyske Motorvej', 
 'speedLimit': 110}

Segments

Get a list of road segments of a specific category within a bounding box. Available categories:

https://mapapi.cs.aau.dk/apidocs/#/Travel%20Time/get_api_v1_segments

In [8]: m = folium.Map(location=[57.0662983, 9.9492564], zoom_start=15) 
folium.GeoJson(sd_result['geometry']).add_to(m) 
m 

Out[8]: Make this Notebook Trusted to load map: File ‑> Trust Notebook+
−

Leaflet (https://leafletjs.com) | Data by © OpenStreetMap (http://openstreetmap.org), under ODbL
(http://www.openstreetmap.org/copyright).

In [9]: seg_params = { 
    'key': key, 
    'country_code': 'dk', 
    'category': 'primary' 
} 
seg_params = {**seg_params, **svendborg_area} 
seg_results = requests.get(api_url + 'segments', seg_params).json()['results'] 
m = folium.Map(location=[55.057119, 10.606324], zoom_start=12) 
for seg in seg_results: 
    folium.GeoJson(seg['geometry']).add_to(m) 
m 

Out[9]: Make this Notebook Trusted to load map: File ‑> Trust Notebook+
−

https://mapapi.cs.aau.dk/apidocs/#/Travel%20Time/get_api_v1_segments
https://leafletjs.com/
http://openstreetmap.org/
http://www.openstreetmap.org/copyright


Traffic Calming

Returns all OSM traffic calming within a bounding box

Travel Time Model Endpoints

Endpoints in this section use estimated travel‑times produced by deep neural models.

Leaflet (https://leafletjs.com) | Data by © OpenStreetMap (http://openstreetmap.org), under ODbL
(http://www.openstreetmap.org/copyright).

In [10]: tc_params = { 
    'key': key, 
    'country_code': 'dk', 
} 
tc_params = {**tc_params, **svendborg_area} 
tc_results = requests.get(api_url + 'trafficCalming', tc_params).json()['results'] 
m = folium.Map(location=[55.057119, 10.606324], zoom_start=12) 
for tc in tc_results: 
    folium.GeoJson(tc['location']).add_to(m) 
m 

Out[10]: Make this Notebook Trusted to load map: File ‑> Trust Notebook+
−

Leaflet (https://leafletjs.com) | Data by © OpenStreetMap (http://openstreetmap.org), under ODbL
(http://www.openstreetmap.org/copyright).

https://leafletjs.com/
http://openstreetmap.org/
http://www.openstreetmap.org/copyright
https://leafletjs.com/
http://openstreetmap.org/
http://www.openstreetmap.org/copyright


The endpoints in this section all have a travel time 'model_id'  parameter, which can either be 'A' , 'B' , 
'C'  or 'D' . Model A only use length, speed and category. Model B adds tortuosity and one‑way. Model C

adds traffic calmings and crossings. Model D adds temporal information. Model C is the default and

recommended. Model D also needs a timestamp  parameter to work to add temporal information, which

should be an iso‑format datetime.

Costmatrix

Create a cost matrix from a list of points

[{'cost': 540.85, 'source': 1, 'target': 2}, 
 {'cost': 645.83, 'source': 1, 'target': 3}, 
 {'cost': 771.04, 'source': 1, 'target': 4}, 
 {'cost': 446.93, 'source': 1, 'target': 5}, 
 {'cost': 515.84, 'source': 2, 'target': 1}, 
 {'cost': 611.7, 'source': 2, 'target': 3}, 
 {'cost': 885.2, 'source': 2, 'target': 4}, 
 {'cost': 779.94, 'source': 2, 'target': 5}, 
 {'cost': 666.88, 'source': 3, 'target': 1}, 
 {'cost': 612.4, 'source': 3, 'target': 2}, 
 {'cost': 579.94, 'source': 3, 'target': 4}, 
 {'cost': 568.56, 'source': 3, 'target': 5}, 
 {'cost': 808.53, 'source': 4, 'target': 1}, 
 {'cost': 876.42, 'source': 4, 'target': 2}, 
 {'cost': 576.67, 'source': 4, 'target': 3}, 
 {'cost': 543.8, 'source': 4, 'target': 5}, 
 {'cost': 539.5, 'source': 5, 'target': 1}, 
 {'cost': 757.0, 'source': 5, 'target': 2}, 
 {'cost': 594.89, 'source': 5, 'target': 3}, 
 {'cost': 581.93, 'source': 5, 'target': 4}]

university shopping_center horse_tracks airport harbor

university 0.00 540.85 645.83 771.04 446.93

shopping_center 515.84 0.00 611.70 885.20 779.94

In [11]: parameters = { 
    'key': key, 
    'country_code': 'dk', 
    'points': aalborg_locations, # lat­lons seperated by '|' 
    'model_id': 'C' 
} 
 
response = requests.get(api_url + 'costMatrix', parameters) 
costmatrix = response.json()['results'] 
# On sucessful json responses the API always return a list called 'results' 
costmatrix 

Out[11]:

In [12]: # The costmatrix result returns the source and target indices 
# This can be mapped to names representing the locations, and displayed with a pandas Data
location_names = ['university', 'shopping_center', 'horse_tracks', 'airport', 'harbor'] 
cm = [[0 for i in range(len(location_names))] for j in range(len(location_names))]  # Crea
 
# Fill in the 2D array 
for entry in costmatrix: 
    cm[entry['source'] ­ 1][entry['target'] ­ 1] = entry['cost'] 
 
df = pd.DataFrame(cm, columns=location_names, index=location_names) 
df 

Out[12]:



university shopping_center horse_tracks airport harbor

horse_tracks 666.88 612.40 0.00 579.94 568.56

airport 808.53 876.42 576.67 0.00 543.80

harbor 539.50 757.00 594.89 581.93 0.00

Isochrone

Returns a polygon with the travel‑time isochrone

Routing Travel Time

Finds the nearest road‑segments using Euclidean distance. Uses the Dijkstra algorithm (the default). Finds the

shortest route based on travel‑time.

In [13]: iso_params = { 
    'key': key, 
    'country_code': 'dk', 
    'point': viborg, 
    'seconds': 120  # Number of seconds driven from the point 
} 
 
iso_results = requests.get(api_url + 'isochrone', iso_params).json()['results'][0] 
m = folium.Map(location=[56.44781,9.39786], zoom_start=12) 
folium.GeoJson(iso_results['polygon']).add_to(m) 
folium.GeoJson(iso_results['center']).add_to(m)  # The start point snapped to a road 
m 

Out[13]: Make this Notebook Trusted to load map: File ‑> Trust Notebook+
−

Leaflet (https://leafletjs.com) | Data by © OpenStreetMap (http://openstreetmap.org), under ODbL
(http://www.openstreetmap.org/copyright).

In [14]: rtt_params = { 
    'key': key, 
    'country_code': 'dk', 
    'points': jutland_route 

https://leafletjs.com/
http://openstreetmap.org/
http://www.openstreetmap.org/copyright


6532.8 seconds 

Rural Route

Returns the linestring of the shortest route and a list of snap‑points

Trajectory Based Travel Time Endpoints

Average Number of Observations

Gets the average number of GPS observations traversing a single segment.

} 
rtt_result = requests.get(api_url + 'routingTravelTime', rtt_params).json()['results'][0] 
 
print(round(rtt_result['time'], 2), 'seconds') 

In [15]: rr_params = { 
    'key': key, 
    'country_code': 'dk', 
    'points': jutland_route 
} 
rr_result = requests.get(api_url + 'ruralRoute', rr_params).json()['results'][0] 
m = folium.Map(location=[57.04633, 9.91902], zoom_start=12) 
folium.GeoJson(rr_result['path']).add_to(m) 
folium.GeoJson(rr_result['points']).add_to(m) 
m 

Out[15]: Make this Notebook Trusted to load map: File ‑> Trust Notebook+
−

Leaflet (https://leafletjs.com) | Data by © OpenStreetMap (http://openstreetmap.org), under ODbL
(http://www.openstreetmap.org/copyright).

In [16]: ano_params = { 
    'key': key, 
    'point': aalborg 
} 
ano_result = requests.get(api_url + 'avgNoObservations', ano_params).json()['results'][0] 
ano_result 

https://leafletjs.com/
http://openstreetmap.org/
http://www.openstreetmap.org/copyright


{'avgObservations': 18.85}

The following endpoints have a similar parameter signature that let's the user make queries in specific time

frames.  

fromdate  and todate  are date smartkeys that specifies the from and to date, defaults are 20120101
and 20130101 .  
fromtime  and totime  are time smartkeys that specifies the from and to time, defaults are 0  and 2359 . 
days  is a day‑of‑week bit pattern, that specifies the days Monday to Sunday to query for, the default is 

1111100  i.e. Monday to Friday.

Entry Speed

Gets minimum, average, and maximum speed from the first GPS point map‑matched to the segment.

{'avg': 19.35, 'max': 55.0, 'min': 0.0}

Exit Speed

Gets minimum, average, and maximum speed from the last GPS point map‑matched to the segment.

{'avg': 15.75, 'max': 40.0, 'min': 2.0}

Most Used Route

Returns a linestring representation of the most used route.

Out[16]:

In [17]: entry_params = { 
    'key': key, 
    'point': aalborg, 
    'fromdate': 20120101, 
    'todate': 20130101, 
    'fromtime': 800, 
    'totime': 1600, 
    'days': '1111100' 
} 
es_result = requests.get(api_url + 'entrySpeed', entry_params).json()['results'][0] 
es_result 

Out[17]:

In [18]: exit_params = { 
    'key': key, 
    'point': aalborg, 
    'fromdate': 20120101, 
    'todate': 20130101, 
    'fromtime': 800, 
    'totime': 1600, 
    'days': '1111100' 
} 
exit_result = requests.get(api_url + 'exitSpeed', exit_params).json()['results'][0] 
exit_result 

Out[18]:

In [19]: mur_params = { 
    'key': key, 
    # Øster Alle, Kridtsvinget towards Aalborg, to Karolinelundsvej 
    'frompoint': '57.04786,9.95181', 
    'topoint': '57.04635, 9.93434', 
    'fromdate': 20120101, 



{'route': {'coordinates': [[9.955336, 57.0502011], 
   [9.9547055, 57.0497992], 
   [9.9511408, 57.0474138], 
   [9.9506017, 57.04712], 
   [9.9501586, 57.0468455], 
   [9.9499789, 57.0467888], 
   [9.9496231, 57.0467102], 
   [9.9494008, 57.0466954], 
   [9.9490953, 57.0467025], 
   [9.9459841, 57.0468169], 
   [9.943462, 57.046787], 
   [9.9349541, 57.0470342], 
   [9.9345851, 57.0470145], 
   [9.9343945, 57.0469963], 
   [9.9343934, 57.0468984], 
   [9.9344201, 57.0460941]], 
  'type': 'LineString'}}

Segment Speed

Gets the average travel‑time on a segment over the day.

[{'speed': 0, 'time': '0'}, 
 {'speed': 0, 'time': '1'}, 
 {'speed': 0, 'time': '2'}, 
 {'speed': 0, 'time': '3'}, 
 {'speed': 15, 'time': '4'}, 
 {'speed': 16, 'time': '5'}, 
 {'speed': 19, 'time': '6'}, 
 {'speed': 17, 'time': '7'}, 
 {'speed': 18, 'time': '8'}, 
 {'speed': 17, 'time': '9'}, 
 {'speed': 15, 'time': '10'}, 
 {'speed': 15, 'time': '11'}, 
 {'speed': 14, 'time': '12'}, 
 {'speed': 12, 'time': '13'}, 
 {'speed': 14, 'time': '14'}, 
 {'speed': 14, 'time': '15'}, 
 {'speed': 15, 'time': '16'}, 
 {'speed': 15, 'time': '17'}, 
 {'speed': 14, 'time': '18'}, 
 {'speed': 20, 'time': '19'}, 
 {'speed': 22, 'time': '20'}, 
 {'speed': 16, 'time': '21'}, 
 {'speed': 21, 'time': '22'}, 
 {'speed': 0, 'time': '23'}]

    'todate': 20130101, 
    'fromtime': 800, 
    'totime': 1600, 
    'days': '1111100' 
} 
mur_result = requests.get(api_url + 'mostUsedRoute', mur_params).json()['results'][0] 
mur_result 

Out[19]:

In [20]: ss_params = { 
    'key': key, 
    'point': aalborg, 
    'granularity': 60 # Can be 15 or 60. Default 15 
} 
ss_results = requests.get(api_url + 'segmentSpeed', ss_params).json()['results'] 
ss_results # The result is a list of dicts with a speed and time key 

Out[20]:

In [21]:



spqFuelEstimate

Gets the average total fuel estimates on a route for trips/trajectory.

{'length': 5609, 'sidraEstimate': 0.72, 'spEstimate': 2338.53, 'trips': 32}

spqFuelEstimateList

Gets the total fuel estimates on a per trip bases for a route.

[{'datetime': 'Mon, 30 Apr 2012 10:00:00 GMT', 
  'duration': 238, 
  'sidraEstimate': 0.6, 
  'spEstimate': 1871.09}, 
 {'datetime': 'Mon, 30 Apr 2012 14:00:00 GMT', 
  'duration': 214, 
  'sidraEstimate': 0.69, 
  'spEstimate': 2337.2}, 
 {'datetime': 'Tue, 01 May 2012 08:00:00 GMT', 
  'duration': 248, 
  'sidraEstimate': 0.53, 
  'spEstimate': 1539.98}, 
 {'datetime': 'Tue, 01 May 2012 13:00:00 GMT', 
  'duration': 185, 

# The speed time series can be plotted with matplotlib 
time_intervals = [int(s['time'].replace(':', '')) for s in ss_results] 
speed_intervals = [s['speed'] for s in ss_results] 
plt.plot(time_intervals, speed_intervals) 
plt.show() 

In [22]: spq_fe_params = { 
    'key': key, 
    'frompoint': e45_aalborg_tunnel, 
    'topoint': e45_th_sauers_vej, 
    'fromdate': '20120101', 
    'todate': '20120601', 
    'fromtime': 800, 
    'totime': 1600 
} 
spq_fe_result = requests.get(api_url + 'spqFuelEstimate', spq_fe_params).json()['results']
spq_fe_result 

Out[22]:

In [23]: spq_fel_result = requests.get(api_url + 'spqFuelEstimateList', spq_fe_params).json()['resu
spq_fel_result[:10] 

Out[23]:



  'sidraEstimate': 0.79, 
  'spEstimate': 2427.86}, 
 {'datetime': 'Wed, 02 May 2012 15:00:00 GMT', 
  'duration': 167, 
  'sidraEstimate': 0.95, 
  'spEstimate': 3102.27}, 
 {'datetime': 'Fri, 04 May 2012 08:00:00 GMT', 
  'duration': 226, 
  'sidraEstimate': 0.57, 
  'spEstimate': 1705.5}, 
 {'datetime': 'Fri, 04 May 2012 10:00:00 GMT', 
  'duration': 188, 
  'sidraEstimate': 0.82, 
  'spEstimate': 2818.53}, 
 {'datetime': 'Fri, 04 May 2012 16:00:00 GMT', 
  'duration': 181, 
  'sidraEstimate': 0.79, 
  'spEstimate': 2582.26}, 
 {'datetime': 'Mon, 21 May 2012 15:00:00 GMT', 
  'duration': 202, 
  'sidraEstimate': 0.68, 
  'spEstimate': 2147.37}, 
 {'datetime': 'Tue, 22 May 2012 10:00:00 GMT', 
  'duration': 199, 
  'sidraEstimate': 0.75, 
  'spEstimate': 2662.79}]

Create a boxplot of sidra estimates

spqTravelTime

Gets the fastest travel‑time on a route specified by the two points.

In [24]: sidraEstimate = list(map(lambda x: x['sidraEstimate'], spq_fel_result)) 
plt.boxplot(sidraEstimate) 
plt.show() 

In [25]: spq_tt_params = { 
    'key': key, 
    'frompoint': e45_aalborg_tunnel, 
    'topoint': e45_th_sauers_vej, 
    'fromdate': '20120101', 
    'todate': '20120601' 
} 
spq_tt_result = requests.get(api_url + 'spqTravelTime', spq_tt_params).json()['results'][0
spq_fe_result 



{'length': 5609, 'sidraEstimate': 0.72, 'spEstimate': 2338.53, 'trips': 32}

spqTravelTimeList

Gets the travel‑time for each trip/trajectory on a route specified by the two points.

[{'datetime': 'Mon, 30 Apr 2012 10:00:00 GMT', 'duration': 238}, 
 {'datetime': 'Mon, 30 Apr 2012 14:00:00 GMT', 'duration': 214}, 
 {'datetime': 'Tue, 01 May 2012 08:00:00 GMT', 'duration': 248}, 
 {'datetime': 'Tue, 01 May 2012 13:00:00 GMT', 'duration': 185}, 
 {'datetime': 'Wed, 02 May 2012 15:00:00 GMT', 'duration': 167}, 
 {'datetime': 'Fri, 04 May 2012 08:00:00 GMT', 'duration': 226}, 
 {'datetime': 'Fri, 04 May 2012 10:00:00 GMT', 'duration': 188}, 
 {'datetime': 'Fri, 04 May 2012 16:00:00 GMT', 'duration': 181}, 
 {'datetime': 'Mon, 21 May 2012 15:00:00 GMT', 'duration': 202}, 
 {'datetime': 'Tue, 22 May 2012 10:00:00 GMT', 'duration': 199}]

Create boxplot of travel times

Out[25]:

In [26]: spq_ttl_results = requests.get(api_url + 'spqTravelTimeList', spq_tt_params).json()['resul
spq_ttl_results[:10] 

Out[26]:

In [27]: durations = list(map(lambda x: x['duration'], spq_ttl_results)) 
plt.boxplot(durations) 
plt.show() 



                                  response-project.eu 35                      

Appendix C Jyputer Travel Time in Intersections



Travel Times in an intersection

In this example we use the spqTravelTime endpoint, to analyse the how the travel time in an intersection is

different going left, right or straight.

In [1]: import itertools 
import requests 
import folium 
import pandas as pd 
 
api_url = 'https://mapapi.cs.aau.dk/api/v1/spqTravelTime' 
key = 'WyIxIiwiJDUkcm91bmRzPTUzNTAwMCRDd3JSSjNmWkozUG9lOURuJEViTkJ3TnR6THRSV2J5Mnk4TzNqYlR
 
# Define the lon­lat pairs of each directions from and to road coordinates 
north = {'direction': 'north', 'from': (57.0387472,9.9316021), 'to': (57.0380883,9.9317002
south = {'direction': 'south', 'from': (57.0369342,9.9313483), 'to': (57.0372342,9.9312052
west = {'direction': 'west', 'from': (57.037692,9.9297273), 'to': (57.0377534,9.9304561)} 
east = {'direction': 'east', 'from': (57.0378398,9.9337937), 'to': (57.037626,9.9322534)} 
 
# Visulalize the from and to coordinates 
m = folium.Map(location=[57.0380883,9.9317002], zoom_start=17) 
all_points = [north, south, west, east] 
for point in all_points: 
    folium.Marker(location=point['from'], icon=folium.Icon(color='blue'), popup=f'From {po
    folium.Marker(location=point['to'], icon=folium.Icon(color='red'), popup=f'To {point["
m 

Out[1]: Make this Notebook Trusted to load map: File ‑> Trust Notebook















+
−

Leaflet (https://leafletjs.com) | Data by © OpenStreetMap (http://openstreetmap.org), under ODbL
(http://www.openstreetmap.org/copyright).

In [2]: directions = ['north', 'south', 'east', 'west'] 
cm = [[0 for i in range(len(directions))] for j in range(len(directions))]  # Create 2D ar
 
 
# Loop over all pair­wise permutations of the cardinal directions 
for p_from, p_to in itertools.permutations(all_points, 2): 

https://leafletjs.com/
http://openstreetmap.org/
http://www.openstreetmap.org/copyright


north south east west

north 0 24 36 28

south 31 0 38 23

east 32 30 0 26

west 35 25 35 0

    # Create the spqTravelTime parameters 
    params = { 
        'key': key, 
        'frompoint': str(p_from['from']).replace('(','').replace(')',''), 
        'topoint': str(p_to['to']).replace('(','').replace(')',''), 
        'fromdate': 20110101, 
        'todate': 20160101 
    } 
     
    # Make the requests 
    res = requests.get(api_url, params) 
     
    # Fill in the result matrix 
    cm[directions.index(p_from['direction'])][directions.index(p_to['direction'])] = res.j
 
# Display the result matrix as a dataframe 
df = pd.DataFrame(cm, columns=directions, index=directions) 
df 
# The column is the from direction, the row is the to direction 

Out[2]:


	part_01_Report_RESPONSE_i_2_4
	part_02_trajectory_api
	Abstract
	1 Introduction
	2 RESTFul Endpoints
	3 Tutorial Outline
	3.1 Short Overview
	3.2 Hands-On

	4 Summary
	References

	part_03_Report_RESPONSE_i_2_4
	part_04_tutorial_part1
	part_05_Report_RESPONSE_i_2_4
	part_06_tutorial_part2

