

WATERPRO Strategically positioned SRC willow to protect against diffuse pollution into the environment

Diffuse pollution run-off mitigation pilot site at **AFBI Hillsborough Research Farm**

Site Establishment

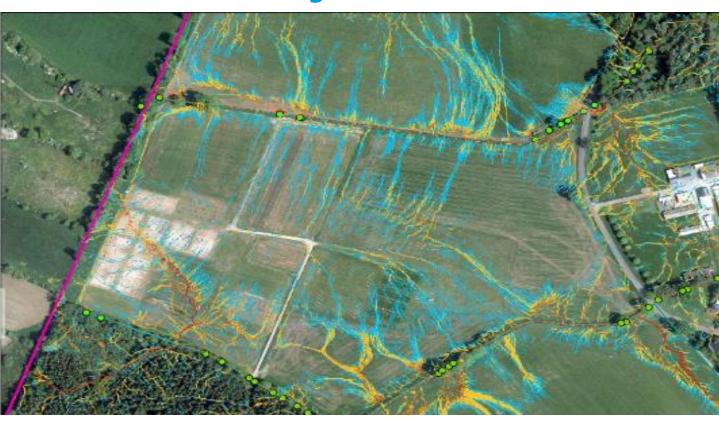
- The areas were targeted using LIDAR
- The areas were prepared for planting in accordance with good practice guidance (May 2018).
- Clonal selection of commercial genotypes and machine planted by step harvester.
- Crop maintenance required pre and post planting (pests and weeds)
- Pre-emptive gapping up to facilitate a full establishment

búnaðarstovan

On-going requirement for some inter-row weed control (cultivator and herbicides)

Water Quality Monitoring

- In-flow and Out-flow measurements via automated samplers.
- Sample analysed for P, N, SS, pH, Conductivity & heavy metals
- Effect of willows on Impact on discharge extent of Increased infiltration capacity.
- Most of the nutrient export and hydraulic load occurs during a low number of high intensity storms.



Strategically positioned SRC willow to protect against diffuse pollution into the environment

Runoff monitoring pilot site at AFBI Hillsborough Research Farm

Site History

- Previous site management 2000 to 2005
 - Silage
 - Beef grazing
 - CENIT site experimental fertilizer Trials
- Hydrological connectivity
 - LIDAR (light detection and ranging)
 - Converted to digital terrain model
 - Revealing overland flow pathways
 - Riparian and biofiltration blocks planted with SRC willow
- Current use 2016 to 2019
 - CENIT site WaterPro Run-off trials
 - Riparian areas planted with SRC willow
 - Biofiltration interventions

- This project is exploring the hypothesis that biofiltration blocks of fast growing tree species (SRC willow) placed in hydrological connectivity will reduce P export from intensive agricultural fields.
- Flow rate and nutrient loads vary on an annual basis strongly depending on hydrological factors.
- Such interventions could help to mitigate P export while providing a biomass crop to farmers

MORE INFORMATION

Chris Johnston, AFBI Hillsborough, N.Ireland. BT26 6DR Email: chris.johnston@afbini.gov.uk

https://www.afbini.gov.uk/

https://www.afbini.gov.uk/articles/environment-and-renewable-energy-centre

