

Nutrient reduction in agricultural runoff using PhosphoReduc filter media for P and N removal

Dr. Michael Gormley Director – Water Academy Heriot Watt University Edinburgh. UK.

Outline

- Setup design
- Test media
- Instrumentation/analysis
- Significance
- Conclusions

Setup design

7 °C 22.3 hrs HRT

10 mL/min

7.5 hrs HRT

7 °C

Media: Media volume: Temperature: HRT: Flow rate: Influent concentration:

Effluent concentration:

 17 °C
 17 °C

 22.3 hrs HRT
 7.5 hrs HRT

 10 mL/min
 30 mL/min

Setup design

- Temperature controlled room
- Tested flow rates
- Steel slag in column
- Fresh water supply

10 samples per day (8 from column effluent, 2 from 600L reservoir)

Test Media

- Steel slag
- Waste material from steel manufacturing
- High in CaO and FeO
- pH reducing

Test parameters

- P:
- N:
- Acidity:
- Total P and Phosphate Total N, Nitrate and Nitrite pH, mV and temperature

Instrumentation/analysis: pH meter

WaterPro measurements pH mV Temperature

Accuracy: pH Accuracy: ±0.002 pH mV Accuracy: ±0.2mV or ±0.05 %, whichever is greater Temperature Accuracy: ±0.3°C (±0.5°F)

Instrumentation/analysis: Gallery plus

WaterPro measurements Total Phosphate Phosphorous Total Nitrate

CapabilitiesTwo measurement techniques:1. Photometric2. Electrochemical

Instrumentation/analysis: Ion Chromatography

WaterPro measurements NO_3 NO_2 PO_4

Capabilities: Anion, Cation and organic acids

Test rig schematic

Test rig operation

Two setups:

- 7 °C and 17 °C
- 18 and 6 hours HRT
 10 and 30 ml/min
- duplicates

Bypass Thicker pipe to take most of the flow

Reservoir

Pump Feed T-piec

Pump

Test Media: PhosphoReduc

- Steel slag
- Waste material
- High in CaO and FeO
- pH reducing

Parameter	Treatment efficiency	Benefits to the environment
Phosphorus	up to 95%	No energy requirements
Ecoli.	up to 90%	Small footprint
Solids	up to 90%	Life span 20 years ?

Drizo, A., et al., (2006). Water Research 40 (8): 1547

Analytical approach

Analyte Total P Total N $NO_3^ NO_2^ PO_4$ DOC

Method

Gallery Nutrient Analyser Gallery Nutrient Analyser Ion Chromatography Ion Chromatography Ion Chromatography DOC Analyser

Nutrient Recovery:

Potential for nutrient recovery:

P sorbing material used in filters to reduce P from waste streams has potential to act as a slow release P fertilizer, however the mechanism for recovery is still unclear.

Conclusions:

- EAF Steel slag offers promise for P and N removal from agricultural runoff
- Nutrient recovery methods have not been confirmed
- There is potential for small scale units to be installed as temporary measures in streams to reduce P under special circumstances.
- Literature shows that there should be no leaching of other contaminants from the EAF steel slag, however this has not been confirmed.
- Longer tests are required to show how the system perfoms long term as effectiveness reduces over time (from near 100% to 80% within two weeks)
- Potential for clogging of filter with consequent reduction in efficiency.

TERIONsting at Heriot-Watt University will continue