

Soili Solismaa, Lauri Solismaa, Małgorzata Szlachta, Tuija Heikkinen, Tatu Lahtinen, Bo Johanson, Geological Survey of Finland (GTK)

WaterPro closing seminar 22.5.2019

### N runoffs caused by mining operations



Figure 14. Example of the traditional pattern of water use at a mine (fresh water = surface water taken from a nearby natural source. Clean water = tap water).



### N originating from explosives

- In ideal explosion ammonium nitrate converts to nitrogen, water and oxygen and fuel converts to carbon dioxide and water: 3NH<sub>4</sub>NO<sub>3</sub> + CH<sub>2</sub> -> 3N<sub>2</sub> + 7H<sub>2</sub>O + CO<sub>2</sub>
- Emulsified explosives usually release cleaner gases and less nitrates to the water compared to traditional explosives (e.g. ANFOs).
- Total consumption of explosives is around 50 000 t/a in Finland, around 25% of the mass is nitrogen
- 16-28 % of the N used in natural stone blasting is leached into the surrounding water system

Share (%) of explosive types used in Finland, 2011





Part 1 - monitoring the leaching of explosive remains during October 2016

- Juuka, soapstone quarry (12.9-28.9.2016)
- Lapinlahti, anorthosite quarry (3.10-3.11.2016)
- Blasting day 6.10.2016
- Emulsified explosive, Kemiitti ~18 000 kg (includes ~4500 kg nitrate)















# The form of nitrogen in the drainage water and in the background



## Part 2 – removal of nitrogen from waste water with mineral adsorbents

- Vermiculite and zeolite were applied as mineral adsorbents
- Water tested was ammonium and nitrate-rich wastewater collected from an industrial site
- Influence of contact time, adsorbent dose, pH and temperature on ammonium and nitrate removal were studied using a jar-tester







## Ammonium and metal removal from waste water using different dose of vermiculite as adsorbent

|                           | $NH_4^+$ | Al  | Ва    | Са   | К    | Mg    | Mn   | Р   | S   | Zn   |
|---------------------------|----------|-----|-------|------|------|-------|------|-----|-----|------|
|                           |          |     |       | mg/l |      |       |      |     |     |      |
| Detection limit           | 2        | 0.2 | 0.02  | 0.5  | 0.5  | 0.1   | 0.02 | 0.1 | 0.1 | 0.02 |
| Untreated wastewater      | 427      | 2.1 | <0.02 | 213  | 77.2 | 45.2  | 1.77 | 8.1 | 165 | 1.63 |
| 4 g of vermiculite, 1 h   | 406      | 0.3 | 0.05  | 250  | 76.6 | 50.2  | 1.71 | 8.2 | 196 | 1.32 |
| 4 g of vermiculite, 20 h  | 353      | 0.2 | 0.08  | 290  | 77.4 | 59.8  | 1.62 | 5.9 | 179 | 0.36 |
| 8 g of vermiculite, 1 h   | 365      | 0.4 | 0.10  | 291  | 75.3 | 55.1  | 1.64 | 8.0 | 196 | 1.18 |
| 8 g of vermiculite, 20 h  | 274      | 0.3 | 0.15  | 352  | 74.2 | 71.2  | 1.47 | 5.7 | 177 | 0.28 |
| 16 g of vermiculite, 1 h  | 314      | 0.6 | 0.19  | 348  | 71.7 | 61.9  | 1.53 | 7.8 | 193 | 1.05 |
| 16 g of vermiculite, 20 h | 205      | 0.5 | 0.29  | 451  | 69.5 | 93.5  | 1.23 | 5.5 | 177 | 0.21 |
| 32 g of vermiculite, 1 h  | 229      | 0.7 | 0.34  | 464  | 66.6 | 75.7  | 1.37 | 7.6 | 195 | 0.77 |
| 32 g of vermiculite, 20 h | 200      | 0.6 | 0.45  | 583  | 60.0 | 125.0 | 0.87 | 5.0 | 176 | 0.12 |



11

| please add the title of the table |     |     | removal from waste water usir<br>e as adsorbent |     |      |      |      |      |     |     |      |  |
|-----------------------------------|-----|-----|-------------------------------------------------|-----|------|------|------|------|-----|-----|------|--|
|                                   |     |     | Ва                                              | Са  | К    | Mg   | Mn   | Na   | Р   | S   | Zn   |  |
|                                   |     |     |                                                 |     | mg/l |      |      |      |     |     |      |  |
|                                   |     |     | 0.02                                            | 0.5 | 0.5  | 0.1  | 0.02 | 0.5  | 0.1 | 0.1 | 0.02 |  |
|                                   |     |     | <0.02                                           | 186 | 70.6 | 42.7 | 1.57 | 20.9 | 7.5 | 170 | 1.79 |  |
| 4 g of zeolite, 1 h               | 430 | 0.5 | 0.02                                            | 196 | 69.6 | 43.4 | 1.54 | 107  | 4.8 | 174 | 1.19 |  |
| 4 g of zeolite, 20 h              | 401 | 0.3 | 0.09                                            | 212 | 69.5 | 45.4 | 1.47 | 131  | 4.3 | 173 | 0.54 |  |
| 8 g of zeolite, 1 h               | 356 | 0.5 | 0.04                                            | 200 | 65.6 | 43.9 | 1.49 | 183  | 4.9 | 175 | 1.15 |  |
| 8 g of zeolite, 20 h              | 349 | 0.2 | 0.10                                            | 227 | 63.9 | 47.3 | 1.39 | 225  | 4.4 | 174 | 0.40 |  |
| 16 g of zeolite, 1 h              | 256 | 0.5 | 0.06                                            | 206 | 58.5 | 44.5 | 1.42 | 316  | 4.8 | 175 | 1.01 |  |
| 16 g of zeolite, 20 h             | 221 | 0.2 | 0.07                                            | 244 | 52.3 | 48.8 | 1.22 | 385  | 4.5 | 178 | 0.28 |  |
| 20 g of zeolite, 1 h              | 248 | 0.5 | 0.06                                            | 212 | 54.8 | 45.2 | 1.40 | 381  | 4.9 | 177 | 0.97 |  |
| 20 g of zeolite, 20 h             | 200 | 0.2 | 0.06                                            | 244 | 47.2 | 49.1 | 1.14 | 453  | 4.7 | 177 | 0.20 |  |



12



Removal of ammonium at different temperature using various doses of zeolite

Removal of ammonium at different temperature using various doses of vermiculite



gtk.fi

\*detection limit of LCK 303 is 2 mg/l what corresponds to 53% of ammonium removal

#### Conclusions

- Monitoring revealed increasing of the nitrogen content in the quarry drainage water after the blasting event. Nitrogen was mainly in the form of nitrate.
- Tested adsorbents significantly reduced ammonium concentration and removed selected metals from the wastewater in the study
- Both adsorbents were capable to remove ammonium effectively under various process conditions temperature change influenced the process efficiency while the pH changes had a minor effect on ammonium adsorption.
- Tests showed that vermiculite and zeolite adsorb various metals, thus utilization of spent adsorbents as fertilizer is questionable -> recovering nutrients is safer from metal free wastewater



#### References

- Jermakka, J., Merta, E., Mroueh, U., Arkkola, H., Eskonniemi, S., Wendling, L., Laine-Ylijoki, J., Sohlberg, E., Heinonen, H., Kaartinen, T., Puhakka, J., Peltola, M., Papirio, S., Lakaniemi, A., Zou, G., Ylinen, A., Capua, F., Neitola, R., Gustafsson, H., Korhonen, T., Karlsson, T., Kauppila, T., Laakso, J., Mörsky, P. (2015) Solutions for control of nitrogen discharges at mines and quarries. Miniman project final report. VTT Technology 225. <u>https://www.vtt.fi/inf/pdf/technology/2015/T225.pdf</u>
- Jermakka, J., Wendling, L., Sohlberg, E., Heinonen, H., Merta, E., Laine-Ylijoki, J., Kaartinen, T & Mroueh, U. 2015. Nitrogen compounds at mines and quarries. Sources, behaviour and removal from mine and quarry waters – Literature study. VTT Technology 226. <u>https://www.vtt.fi/inf/pdf/technology/2015/T226.pdf</u>
- Kauppila, P., Räisänen, ML., Myllyoja, S. (eds). 2011. Best Environmental Practises in Metal Ore Mining. Finnish Environment Institute 29en. <u>https://helda.helsinki.fi/bitstream/handle/10138/40006/FE\_29en\_2011.pdf?sequence=4</u>
- Karlsson, T. & Kauppila, T. Explosives-originated nitrogen emissions from dimension stone quarrying in Varpaisjarvi, Finland. Environ Earth Sci (2016) 75:834
- Solismaa, S., Szlachta, M., Johanson, B., Heikkinen T & Solismaa, L. 2019. Vermiculite and zeolite as adsorbents for the treatment of ammonium-rich wastewater in variable temperature and pH conditions. Geological Survey of Finland. GTK Open File work Report 49/2019.

