## Review & outlook

Meeting | April 22<sup>nd</sup> 2021

Bureau de coordination du pilier Sciences







#### The Idea of ELCOD











"[...] Development of a low cost, environmentally friendly and cost-effective long-range UAV [...]"

## Endurance Low COst Drone

Web site: www.elcod.eu

7

## **Project Partners**











**Associated partners:** 









# Video form ELCOD project



https://science.rmtmo.eu/actualites/le-projet-interreg-elcod-se-presente-en-video/

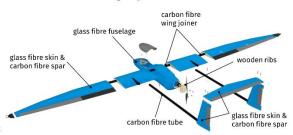






#### **Status Quo...**

- Successfully developed, manufactured, tested, and operated two alternative ELCOD designs!
- Successful modification and adaptation of different propulsion solutions for mid- to long-range operation!
- MTOW : 25kg
- Cruise speed 90-110km/h
- CNRS (ICPEES) : air quality and pollution sensor development





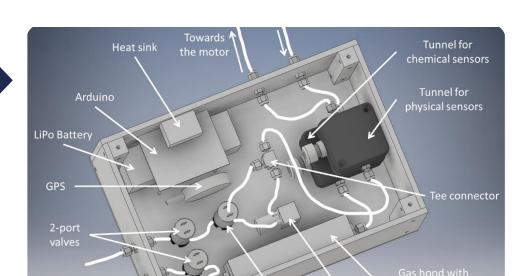



# wooden aileron/elevator laminated wooden lightweight structure shaft end (propeller mount) cowling industrial type long endurance

#### Design Option "Stork"



Wing span: 2,60m; MTOW: 25kg; Cruise speed 90-10km/h Optimized thermal motor, flight autonomy up to 30H Wing span: 5 m; MTOW: 25kg; Cruise speed 90-110km/h Hydrogen Fuel cell: 1000W, Electric flight autonomy 5-6H








#### **Status Quo...**

 Successfully developed, manufactured, tested, and operated air quality and pollution sensors!











### Integration into the drone and Flight test





Sensors of air pollutants tested and calibrated:

Ozone: O<sub>3</sub>

Nitrogen oxides: NO<sub>2</sub> and NO

CO, etc.





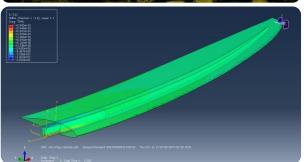
Air pollutants sensors installation into the drone

Pressure versus time and altitude


#### Recent activities...

• Two PhD thesis...

"Optimization of energy management in a drone equipped with a fuel cellbased hybrid source" (beginning 1st October 2020, Thomas PAVOT)


"Multiscale studies of flax fibers & flax fiber composites to design the world first longe range biobased drone" (beginning 1st December 2019, Martin Lefebyre)











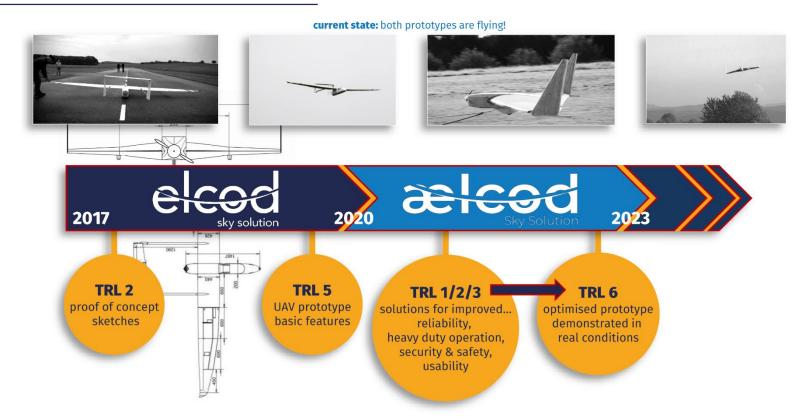






#### Follow up activities...










### Follow Up Project





#### **Follow Up Project**





11

#### **Follow Up Project**

- Collaboration with fire fighters (SDIS67) with development of air pollution and Particulate Matter (PM) with drones
- Collaboration with the Olympic Center of Freiburg for athletes monitoring with drones
- Collaboration with Arkema and Eco-technilin for the development of the first bio composite drone with hydrogen fuel cell propulsion and flax fibers
- 7 publications in international reviews or conferences
- 3<sup>rd</sup> place for the "team Cigogne" at the conference/competition IMAV2019 (www.imav.org)

# Remarks for future project

- Modification of the project beginning dates :September-October instead of April
- Involvement of the companies if they have a founding





## Thanks for your attention!





