Electronic design and Automatic flight control

Dipl. Ing. T. PAVOT Dr. Dipl. Ing. A. PAULINO Antoine MURIE

Content

- 1. Electrical design
 - a. Global electronics
 - b. Power management board
- 2. Communications solution
- 3. Pixhawk controller
- 4. Model identification of the plane
 - a. In-flight
 - b. Off-flight
- 5. Simulation on the attitude controller
- 6. Further work in control

Electrical design

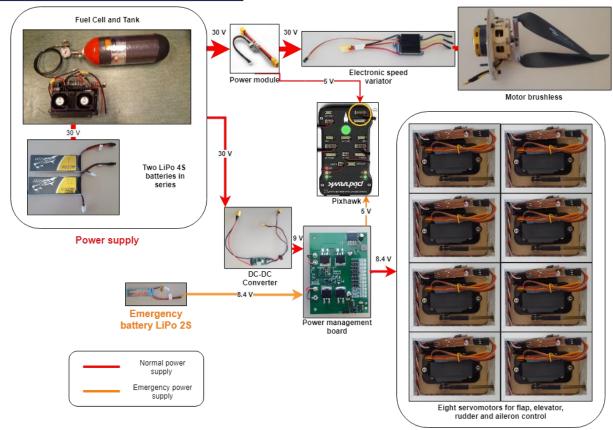
Main goal:

- Redundancy
- Reliability

Two power sources:

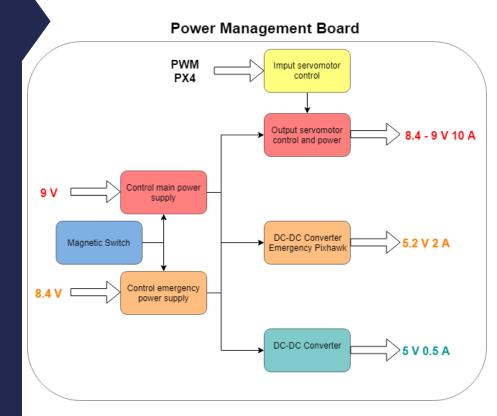
- 30 V Batteries / Fuel cell
- 8.4 V Emergency Battery (flight controller and servos)

Flight controller:


- Pixhawk board
- PX4 Software

Embedded electronics

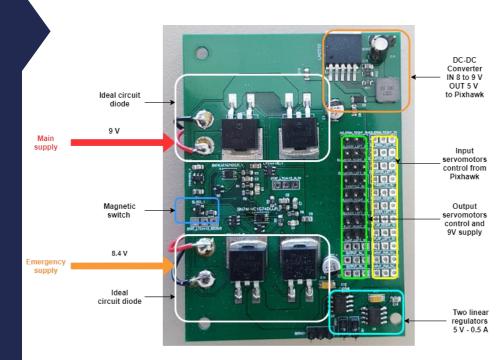
Electronic schematic on ELCOD Drone (Stork)



Power management board

Features:

- Management between normal and emergency supply
- Magnetic switch
- Ideal circuit diode
- 5V DC-DC
- Power supply for servomotors



Power management board

Features:

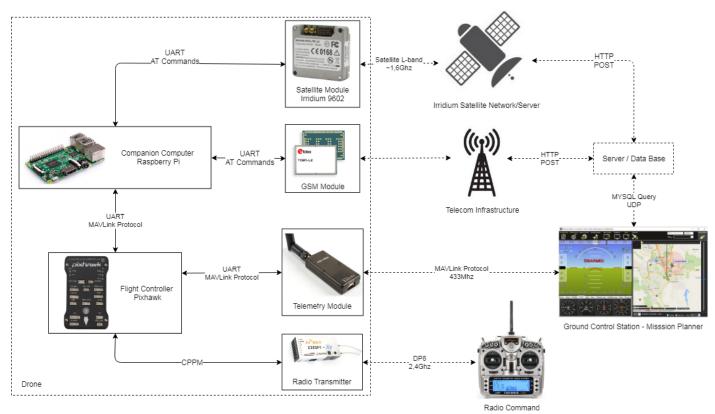
- Management between normal and emergency supply
- Magnetic switch
- Ideal circuit diode
- 5V DC-DC
- Power supply for servomotors

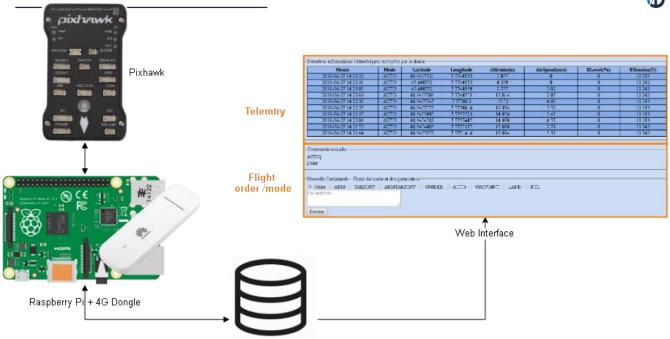
Data link (Position, on board sensors, flight orders and flight mode)

- Short range (1 to 2 km): Zigbee, Wifi or bluetooth
- Long range:
 GSM/GPRS mixed to
 an iridium Satellite

Manual remote control

 Classical radio link in 2.4Ghz

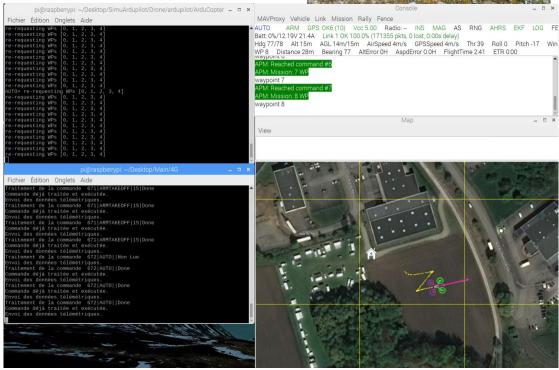



Communication schematic

Bi-directional GSM Link

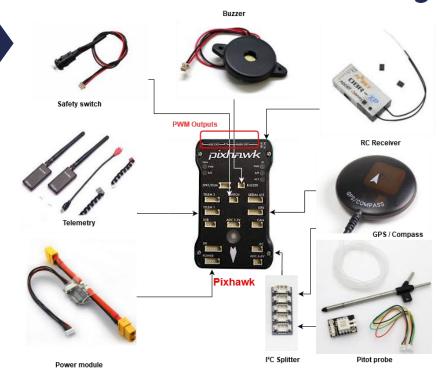
Features:

Raspberry communicating Pixhawk through dronekit with a UART Link


Database

- SQL database to manage data with a Web Interface
- 4g dongle to enable communication between the drone and the web

Simulation and testing

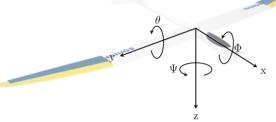


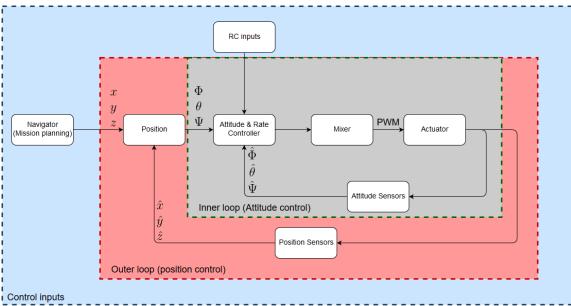
Software simulation by ardupilot simulator

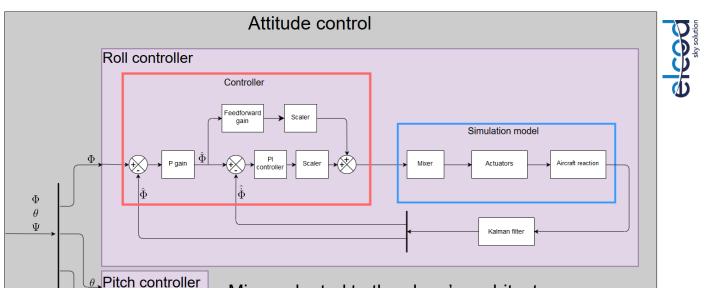
Flight controller: Pixhawk

- 2 power inputs
- Power module to measure current and voltage
- 14 servo motors outputs
- Pitot probe and external compass on the I²C protocol
- GPS and external magnetometer
- RC receiver
- Telemetry 433 MHz

Ground control station: QGroundControl


- Open source software
- Use Mavlink UAV communication protocol
- Plan, save and load autonomous missions
- Download and analyze mission logs

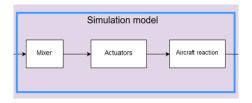



Px4 Flight control

x : Estimate of x from an EKF

Mixer adapted to the plane's architecture

•Roll, Pitch and Yaw effects supposed independent


Steps:

1. Model identification

2. Control synthesis

Model identification: roll example

- Linearize the nonlinear mathematical model
- Disconsider interaxes-coupling
- Nominal flying conditions

$$rac{\Delta \mathrm{roll}}{\Delta \mathrm{aileron}} = rac{\mathbf{K}}{s(s+\mathbf{p})}$$

Two proposed methods:

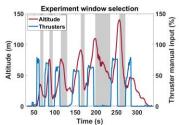
- With flight data
- Through computer simulations

Modelling procedure - roll

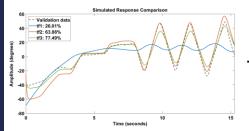
Identify a transfer function

$$rac{\Delta ext{roll}}{\Delta ext{aileron}} = rac{\mathbf{K}}{s(s+\mathbf{p})}$$

- In-flight procedure
- Off-flight procedure


In-flight:

1. Arbitrarily excite the ailerons


1. Select data from log files

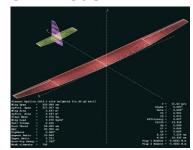
Separate manoeuvers from experiments:

Fall with deactivated thrusters

Identify a transfer function

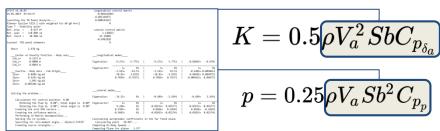
$$rac{\Delta \mathrm{roll}}{\Delta \mathrm{aileron}} = rac{64.68}{s(s{+}18.6)} \ _{V_a \,=\, 11.04m/s}$$

Modelling procedure - roll


Identify a transfer function

$$rac{\Delta \mathrm{roll}}{\Delta \mathrm{aileron}} = rac{\mathbf{K}}{s(s+\mathbf{p})}$$

- In-flight procedure
- Off-flight procedure


Off-flight:

Build a CAD model

Simulate and obtain aerodynamic coefficients

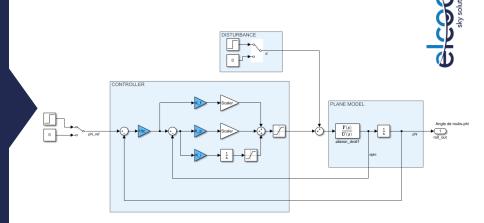
XFLR5 Stability analysis log

Identify a transfer function

$$rac{\Delta \mathrm{roll}}{\Delta \mathrm{aileron}} = rac{63.40}{s(s+16.75)} \ V_a = 11.46 m/s$$

Procedure comparison

Use of open source tools and simple to put in application.


Useful for all fixed-wing planes.

	In-flight	Off-flight
Pros	Speed dependent modelFreedom on model choice	 No weather issues Tools available on the development of the drone
Cons	User dependentSensor dependent	Prone to design simplificationsSingle airspeed model
$rac{\Delta ext{roll}}{\Delta ext{aileron}}$	$rac{64.68}{s(s{+}18.6)} \ V_a = 11.04 m/s$	$rac{63.40}{s(s{+}16.75)} \ _{V_a = 11.46m/s}$

Attitude controller simulation

- Airspeed-scaled
 PID and FF
- Can be tuned for robustness constraints

Constant speed model

Optimised unitary closed-loop step response

- Settling time: 0.23s
- No overshoot

Further work in control

- Plane model + PX4 controller in Matlab for PID tuning
 - Endurance constraints
 - H-infinity based controller
- Other control laws
 - Adaptive control
- Refine the model
 - Varying airspeed
 - Inter-axes couplings

Aim: Create a control strategy that is *robust* to *load variations* and *windspeed*, change the given PX4 control structure to take into account *airspeed*, *pressure*, varying *plane mass*...

