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Abstract: The effect of three different cerium salts (Ce(NO3)3·6H2O, CeCl3·7H2O and
Ce(OOCCH3)3·5H2O) on the ring-opening polymerization (ROP) of a model diamine-based
benzoxazine (4EP-pPDA) was investigated. With the incorporation of the cerium salts, the curing
temperature of 4EP-pPDA is reduced substantially, and the glass transition temperatures of the
resulting networks are increased significantly. The three cerium salts exhibit different catalytic
activities, which were analyzed by FT-IR, NMR, and energy-dispersive X-ray (EDX). Ce(NO3)3·6H2O
was found to exhibit the best catalytic effect, which seems to be related to its better dispersibility
within 4EP-pPDA benzoxazine precursors.
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1. Introduction

Benzoxazine resins are relatively new incomers in the field of thermosetting materials [1,2] and
they are obtained from the ring-opening polymerization of 1,3-benzoxazine precursors [3]. The latter
can be straightforwardly synthesized in high yield (>90wt%) by a Mannich-like condensation of an
amine, a phenol, and formaldehyde, either in solution or in bulk [4–6]. Moreover, the diverse and large
number of commercially available phenolic derivatives and amine derivatives allows the preparation
of a very wide range of monomers including the incorporation of additional substituents which can
bring new functionalities to materials such as self-healing [7], self-cleaning [8], photo-sensing [9]
properties, etc. Benzoxazine resins have attracted substantial attention these last two decades in the
first place, it is mainly because they exhibit a combination of excellent properties [10,11] such as a high
glass transition temperature, near-zero volumetric change upon curing, low water absorption, good
electrical resistance, low surface free energy, and high char yield. Many endeavors have been made
to explore the possible applications in the automotive, aerospace, and construction industries in the
form of matrix resin or surface coating [8,12,13]. However, for most benzoxazine precursors, their
thermal ring-opening polymerization usually occurs at a high curing temperature (i.e., over 180 ◦C)
not compatible with several manufacturing processes of materials. This drawback could limit the use
of benzoxazine, and it particularly cannot withstand such high temperature heating as surface coatings

Polymers 2020, 12, 415; doi:10.3390/polym12020415 www.mdpi.com/journal/polymers

http://www.mdpi.com/journal/polymers
http://www.mdpi.com
https://orcid.org/0000-0003-1534-1564
http://dx.doi.org/10.3390/polym12020415
http://www.mdpi.com/journal/polymers
https://www.mdpi.com/2073-4360/12/2/415?type=check_update&version=2


Polymers 2020, 12, 415 2 of 12

for several substrates [14–16]. Therefore, the search for reaction paths reducing the curing temperature
has become one of the main focuses to overcome in this field.

Although it is not fully elucidated, it is commonly accepted that the thermal ring-opening
polymerization of benzoxazine monomers occurs via cationic polymerization and the mechanism
includes mainly three steps: coordination ring-opening of the oxazine ring, an electrophilic attack, and,
finally, rearrangement [17]. In this context, several strategies have been proposed and reported in the
literature to lower the polymerization temperature of benzoxazine precursors.

First, thanks to the great flexibility in the design of the molecular structure of benzoxazine
monomers, several studies have focused on the understanding of the effects of structural
parameters—including the nature, position, and hindrance that chemical groups bear on the aromatic
backbone—on the reactivity of the corresponding monomers. For instance, the comparison of
structurally different phenylenediamine-based benzoxazines with resorcinol/hydroquinone-based
benzoxazines has indicated that the curing exotherm seems to be influenced to a large extent by the
position of the oxazine ring on the aromatic units [18]. The influence of bridging groups on thermal
ring-opening polymerization was also studied on diphenol-based benzoxazine monomers [19]. The
authors observed that electron-withdrawing groups promoted thermal activated polymerization and
that the curing temperature decreased by lowering the bond energy of C–O on oxazine rings. The
distance separating the oxazine groups also seems an important parameter in the case of linear aliphatic
diamine-based benzoxazine monomers. Indeed, it appears that the polymerization exotherm position
decreases to a lower temperature range with the shortening of the length of the aliphatic diamine
chain [20]. Moreover, the synthesis of multifunctional benzoxazines is also reported to undergo
polymerization at lower temperatures when the number of oxazine functionalities increases [21,22].

In addition to these structural considerations, it also appears that the introduction of certain
appropriate moieties like hydroxyl [23,24], imidazole [25], and amine [26] groups onto the backbone
structure of benzoxazine monomers lowers the temperature of the ring-opening of the oxazine. In fact,
it is now well known that the introduction of electron-withdrawing or electron-donating groups on
the structural skeleton of benzoxazine monomers can greatly affect their reactivity by activating the
ring-opening or stabilizing the intermediates [27]. Indeed, the catalyst effect of neighboring groups
accelerating benzoxazine polymerization has been clearly shown in the case of carboxylic acid- [28],
hydroxyl- [29], and amide [30] containing benzoxazine monomers. Moreover, the substitution on
the ortho-position was found to further stimulate and activate the ring-opening polymerization
when compared to its para-substituted counterpart as well in the case of a methylol functional
benzoxazine [23,31] as in the case of an ortho-amide-imide functional benzoxazine [30].

Another strategy uses the reactivity of benzoxazine functions towards other functional groups
such as amines. This approach is a rather new polymerization method via copolymerization than
a direct acceleration of benzoxazine polymerization. Nevertheless, it is worth noting that in the
case of copolymerization of benzoxazines with amines, in addition to the significant lowering of the
polymerization temperature, an enhancement of the resulting mechanical and thermal properties of the
networks has been achieved [32]. Another study reported the preparation and use of a polyamine-based
oligomer to accelerate benzoxazine polymerization. Again, in this case, the polyamine was able to
promote both the curing and, simultaneously, enhance the glass transition temperature as well as the
thermal stability of the cured network [33].

A third strategy to reduce the curing temperature of benzoxazines consists of using initiators
of cationic ring-opening polymerization. Some researchers have employed Lewis acids and
nucleophilic catalysts to promote polymerization of benzoxazine, consequently reducing the curing
temperature [34–36]. Indeed, several Lewis acids such as PCl5, PCl3, and POCl3, and transition metal
salts such as TiCl4, AlCl3, CuCl2, AgCl, ZnCl2, NiCl2, FeCl3, and LiI have been tested successfully.
Moreover, Liu et al. observed that LiI was especially efficient [37]. Recently, Akkus et al. highlighted
that for amine salts, the nucleophilicity of the counterion had high impact, and they observed that the
anion I− exhibited the best catalytic behavior [38]. Organic-based catalysts such as acetylacetonato
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complexes with iron, manganese, or cobalt, sulfonates such as para-toluene sulfonate, or organic
oniums such as sulfonium hexafluoroantimonates were also found to be highly efficient for promoting
the polymerization of benzoxazine precursors at a lower temperature [39–41].

Although many approaches have already been considered, they do not always allow retaining
or improving the properties of the pristine polybenzoxazine network. Therefore, there is still a need
for developing alternative solutions, which, in addition, should also consider environmental and
toxicological issues for practical use, especially in the coating industry.

In this paper, we report the synthesis of a new diamine-based benzoxazine (4EP-pPDA) synthesized
by the reaction of bio-basable reactants (4-ethylphenol, 1,4-phenylenediamine, and paraformaldehyde)
and its thermal ring-opening polymerization in the presence of different kinds of cerium salts. The
structure chosen for the benzoxazine monomers is based on both environmental and theoretical criteria.
Indeed, 4-ethylphenol is a biomass-derived phenolic compound which can be obtained following an
enzymatic process from natural and widely spread p-coumaric acid [42]. In addition to its bio-based
character, the interest of 4-ethylphenol structures also lies in the absence of additional reactive functions
on its structural backbone, thus allowing to use it as a model molecule to focus exclusively on the effect
of cerium salts on the polymerization of benzoxazine functions. To the best of our knowledge, the
ability of these metallic salts to accelerate benzoxazine polymerization has never been tested.

2. Materials and Methods

2.1. Materials

4-ethylphenol (≥97.0%) and CeCl3·7H2O (≥99.0%) were purchased from Alfa Aesar (Karlsruhe,
Germany). 1,4-phenylenediamine (≥99.0%) and Ce(OOCCH3)3·5H2O (≥99.9%) were purchased from
Sigma-Aldrich (Darmstadt, Germany). Ce(NO3)3·6H2O was purchased from Honeywell Fluka (Seelze,
Germany). Paraformaldehyde (≥95.0%) and absolute ethanol (≥99.5%) were purchased from VWR
(Leuven, Belgium). The starting reagents were used without further purification.

2.2. Preparation of 4EP-pPDA

The synthesis of 4EP-pPDA was adapted from a procedure in bulk reported elsewhere by
Ishida et al. [4]. 4-ethylphenol 23.21 g (1.9 × 10−1 mol) and 1,4-phenylenediamine 10.00 g (9.25 ×
10−2 mol) were mixed in a beaker with a mechanical stirrer at 120 ◦C until a homogeneous liquid
was obtained. Then, paraformaldehyde in excess of 12.22 g (4.07 × 10−1 mol) was rapidly added
under vigorous stirring to prevent bubbling from the rapid decomposition of paraformaldehyde into
formaldehyde. The resulting mixture was reacted for seven additional minutes under continuous
stirring. The crude reaction product was dissolved in refluxing ethanol (about 500 mL) and the
precursors of the resin were precipitated upon cooling. The resulting precipitate was collected, filtered
and abundantly washed with cold ethanol. Then it was dried under vacuum. A vitrified yellow resin
was obtained (weight yield about 65%).

2.3. Preparation of 4EP-pPDA/Cerium Salt Mixtures

4EP-pPDA and cerium salts were first added into the dichloromethane and ethanol mixture
solvents (dichloromethane/ethanol=90/10 v/v). After stirring for 2 h at room temperature, the solvent
was removed by volatilizing and drying under vacuum. The content of each cerium salt in the
4EP-pPDA substrate was 5 mmol/100 g. In this work, we denote briefly the samples made from
Ce(NO3)3·6H2O, CeCl3·7H2O, and Ce(OOCCH3)3·5H2O as 5mM Ce(NO3)3·6H2O, 5mM CeCl3·7H2O,
and 5mM Ce(OOCCH3)3·5H2O, respectively.

2.4. Measurements and Characterization

Fourier transform infrared (FT-IR) spectra were recorded using a BRUKER IFS 66v/S spectrometer
(Bruker Instruments, Billerica, MA, USA) from 400 to 4000 cm−1 with a resolution of 4 cm−1. 1H-NMR
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spectra were obtained by using a BRUKER Avance DMX-500 MHZ spectrometer (Bruker Instruments,
Billerica, MA, USA) in CDCl3 with TMS as the internal standard. Differential scanning calorimetry
(DSC) was performed on a TA DSC Q200 calorimeter (TA Instruments, New Castle, DE, USA) from
room temperature up to 300 ◦C with a heating rate of 10 ◦C/min and a nitrogen flow rate of 50
mL/min. Field-emission scanning electron microscopy (FE-SEM) and energy-dispersive X-ray (EDX)
analysis were performed with a Hitachi S-4800 analyzer (Hitachi, Tokyo, Japan) operated at 20 kV.
Thermogravimetric analysis (TGA) was performed on a TA TGA Q50 thermogravimetric analyzer (TA
Instruments, New Castle, DE, USA) from room temperature to 550 ◦C with a heating rate of 10 ◦C/min
under a nitrogen atmosphere UV-visible spectral measurements were performed on the elaborated
powders with a Labsphere RSA-PE-19 reflectance accessory (Labsphere, N. Sutton, NY, USA).

3. Results and Discussion

A new diamine-based benzoxazine (4EP-pPDA) was synthesized by the reaction of 4-ethylphenol,
1,4-phenylenediamine, and paraformaldehyde as shown in Scheme 1.
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Scheme 1. Synthesis of 4EP-pPDA and corresponding cured network of Poly(4EP-pPDA).

The chemical structure was investigated by FT-IR and 1H-NMR. The results are gathered in
Figure 1. More specifically, the FT-IR spectrum of 4EP-pPDA shows absorption peaks at 1516, 1223,
1034, and 945 cm−1. Based on similar benzoxazine derivatives reported in the literature [43–45], they
are ascribed to the trisubstituted benzene ring stretching, asymmetric stretching vibration of C-O-C,
symmetric stretching vibration of C-O-C, and out-of-plane C-H, respectively. In the 1H-NMR spectrum
of 4EP-pPDA, the characteristic protons appear at around 4.51 (Ar-CH2-N) and 5.24 (O-CH2-N) ppm,
confirming the formation of the 4EP-pPDA molecular structure [45–47]. Furthermore, the integration
ratios of the peaks agree well with the proposed chemical structure. These results further confirm the
successful synthesis of 4EP-pPDA precursors.
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Thereafter, the cerium salts were incorporated within the 4EP-pPDA precursors via a solvent
mixture of dichloromethane/ethanol (90/10 v/v) as shown in Scheme 2.
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Scheme 2. Illustration of the preparation process of 4EP-pPDA/cerium salt mixtures.

Interestingly, the three salts (i.e., Ce(NO3)3·6H2O, CeCl3·7H2O, and Ce(OOCCH3)3·5H2O) seem
to dissolve well within the 4EP-pPDA-based solution and color changes are observed for the three
systems. Indeed, the solutions containing 5 mM Ce(NO3)3·6H2O, 5 mM CeCl3·7H2O, and 5 mM
Ce(OOCCH3)3·5H2O all become dark red (see Figure 2). This color change phenomenon is mostly due
to the complexation between a 4EP-pPDA monomer with Ce ions via an oxygen or nitrogen atom in
the oxazine ring as coordination atoms [48,49].
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Figure 2. Photos of (a) Ce(NO3)3·6H2O, (b) CeCl3·7H2O, (c) Ce(OOCCH3)3·5H2O, (d) 4EP-pPDA, (e)
5 mM Ce(NO3)3·6H2O, (f) 5 mM CeCl3·7H2O, and (g) 5mM Ce(OOCCH3)3·5H2O in the solvents of
dichloromethane/ethanol (90/10 v/v).
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After removal of the solvent mixture, the color of the samples is modified and different shades
between the three samples appear, as shown in Figure 3. Interestingly, the color of all samples
looks uniform and homogeneous, suggesting a fine dispersion of all the cerium salts within the
4EP-pPDA precursors.
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The complexation between 4EP-pPDA monomers with Ce ions was further confirmed by UV-VIS
spectroscopy. Indeed, as shown in Figure 4, a broadening and shifting of the band towards 500 nm
attributed to the formation of cerium complexes with 4EP-pPDA monomers are observed in the case of
systems 5 mM Ce(NO3)3·6H2O, 5 mM CeCl3·7H2O, and 5 mM Ce(OOCCH3)3·5H2O.
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The effect of cerium salts on the curing behavior of 4EP-pPDA precursors was studied by
DSC, as shown in Figure 5a. The neat 4EP-pPDA precursors synthesized for this study exhibit an
exothermic peak with a maximum temperature (Tp) at about 232 ◦C, corresponding to the ring-opening
polymerization of benzoxazine. For all 4EP-pPDA systems containing cerium salt, one exotherm is
also observed, but the Tp of these systems is shifted to lower temperatures. The presence of only
one exotherm further confirms the good dispersion of cerium salts within the 4EP-pPDA matrix. It
also shows the ability of cerium salts to accelerate the ring-opening polymerization of 4EP-pPDA
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benzoxazine precursors. Although all three systems contain the same amount of cerium, the decrease
in Tp appears not to be identical. Indeed, the following order is observed: 5 mM Ce(NO3)3·6H2O
(36 ◦C) > 5 mM CeCl3·7H2O (20 ◦C) > 5mM Ce(OOCCH3)3·5H2O (15 ◦C), indicating differences in the
catalytic activities for the three cerium salts. On the other hand, an obvious decrease in the enthalpy of
the curing reaction (∆H) is observed with the introduction of cerium salt. It also should be noted that
Ce(NO3)3·6H2O, CeCl3·7H2O, and Ce(OOCCH3)3·5H2O all contain structural water which is released
in the curing region of 4EP-pPDA, as observed by DSC in Figure 6. Hence, the reason for the reduction
of ∆H can also be explained by the superposition of two antagonist phenomena, i.e., the benzoxazine
polymerization, which is exothermic, and the releasing of crystal water, which is endothermic.
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To try and clarify the activities of cerium salts, the 4EP-pPDA systems containing cerium salts
were further monitored by DSC after isothermal curing at 150 ◦C for 4h, as shown in Figure 5b. The
polymerization enthalpy ∆H of a neat 4EP-pPDA system is found to decrease by 44%. By contrast, the
enthalpies of 5 mM Ce(NO3)3·6H2O, 5 mM CeCl3·7H2O, and 5 mM Ce(OOCCH3)3·5H2O are found to
decrease by 86%, 58%, and 32%, respectively. This result clearly indicates that among the three cerium
salts, Ce(NO3)3·6H2O is the one exhibiting the best catalytic efficiency, which can significantly shorten
the curing time. Surprisingly, Ce(OOCCH3)3·5H2O exhibits the worst performance whereas the activity
of CeCl3·7H2O stands in between that of Ce(NO3)3·6H2O and Ce(OOCCH3)3·5H2O. Furthermore,
the order of glass transition temperatures (Tg) observed is 5 mM Ce(NO3)3·6H2O (144 ◦C) > 5 mM
Ce(OOCCH3)3·5H2O (137 ◦C) > 5 mM CeCl3·7H2O (123 ◦C) > 4EP-pPDA (119 ◦C). The highest Tg of
the 5 mM Ce(NO3)3·6H2O system can be explained by the highest curing degree and the formation of
the corresponding polybenzoxazine network.
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To better understand the above results, representative samples of 4EP-pPDA and 4EP-pPDA
modified by cerium salts after curing at 150 ◦C for 1h were analyzed by FT-IR and 1H-NMR. As shown
in Figure 7a, by selecting the peak at 1516 cm−1 as the reference, the relative absorption intensities
of the benzoxazine ring for 4EP-pPDA/cerium salt mixtures are found to be weaker than those of
4EP-pPDA. In addition, as presented in Figure 7b, the peaks at 5.24 and 4.51 ppm are split into two
signals, and the integrations at 5.24 ppm are lower than those of the samples before curing, indicating
the breakage of O-CH2-N groups. The order of relative content for the O-CH2-N group is 5 mM
Ce(NO3)3·6H2O < 5 mM Ce(OOCCH3)3·5H2O < 5 mM CeCl3·7H2O < 4EP-pPDA. Furthermore, new
signals at about 9.9 and 8.5 ppm can be observed, revealing the presence of an Ar-OH group [48]. The
order of relative content for the Ar-OH group is 5 mM Ce(NO3)3·6H2O > 5 mM Ce(OOCCH3)3·5H2O
> 5 mM CeCl3·7H2O > 4EP-pPDA. Therefore, from these results it appears clearly that during the
curing process the cerium salts promote the breaking of the O-CH2-N group and the corresponding
cross-linking reaction.
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Figure 7. (a) FT-IR spectra and (b) 1H-NMR spectra of the 5mM Ce(OOCCH3)3·5H2O (a1, b1), 5mM
CeCl3·7H2O (a2, b2), 5mM Ce(NO3)3·6H2O (a3, b3), and neat 4EP-pPDA (a4, b4) after curing at 150 ◦C
for 1 h.

Figure 8a–d presents the top view SEM images of 4EP-pPDA (a), 5 mM Ce(NO3)3·6H2O (b), 5 mM
CeCl3·7H2O (c), and 5 mM Ce(OOCCH3)3·5H2O (d) after curing at 150 ◦C for 4 h. Clearly, some white
particles can be seen in Figure 8c,d, which are attributed to the cerium salts. The elemental composition
of the cured samples was also analyzed as shown in Figure 8e–h. The order of weight content of Ce is
5 mM Ce(NO3)3·6H2O > 5 mM CeCl3·7H2O > 5 mM Ce(OOCCH3)3·5H2O, which is consistent with
the catalytic activity previously determined. The lowest cerium content observed for the sample 5
mM Ce(OOCCH3)3·5H2O is mostly due to the lowest dispersibility of Ce(OOCCH3)3·5H2O. When
removing the solvent, most of the Ce(OOCCH3)3·5H2O possibly precipitates out of 4EP-pPDA matrix.
Hence, the differences in the catalytic activity are mostly due to the dispersibility of the cerium salt
within the 4EP-pPDA matrix. If it is dispersed in the matrix at a molecular level, the complexation
between the 4EP-pPDA monomer with Ce ion via the oxygen or nitrogen atom in the oxazine ring may
more easily promote the breaking of a O-CH2-N group, so the catalytic effect is obvious.
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Ce(NO3)3·6H2O, (c,g) 5 mM CeCl3·7H2O, and (d,h) 5 mM Ce(OOCCH3)3·5H2O after curing at 150 ◦C
for 4 h.

In addition, the effect of the above three cerium salts on the thermal stability of 4EP-pPDA
after curing at 150 ◦C for 4 h was investigated, as shown in Figure 9. As for the 5 wt % weight
loss temperature (T5%), the Ce(NO3)3·6H2O shows almost no influence, but the CeCl3·7H2O and
Ce(OOCCH3)3·5H2O present obvious improvement. As for the residue at 550 ◦C, the CeCl3·7H2O
shows no influence, and the Ce(NO3)3·6H2O and Ce(OOCCH3)3·5H2O present little improvement.
Therefore, the three cerium salts reported herein can accelerate the ring-opening polymerization of
4EP-pPDA benzoxazine precursors without sacrificing their thermal stability.
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mM Ce(OOCCH3)3·5H2O after curing at 150 ◦C for 4 h.
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4. Conclusions

Model benzoxazine precursors (4EP-pPDA) were synthesized from bio-basable 4-ethylphenol,
1,4-phenylenediamine, and paraformaldehyde and used to test the ability of three different cerium
salts (i.e., Ce(OOCCH3)3·5H2O, CeCl3·7H2O, and Ce(NO3)3·6H2O) to catalyze its ring-opening
polymerization. Although the three cerium salts studied were found to accelerate the opening
of a O-CH2-N group and promote the corresponding cross-linking reaction of 4EP-pPDA precursors,
they also exhibit different catalytic activities. Ce(NO3)3·6H2O was found to be the most efficient
catalyst to reduce the curing temperature of 4EP-pPDA precursors. This result was mainly related to
its better dispersibility within the benzoxazine matrix. It seems that the most important parameter is
to obtain a dispersion of the initiator at a molecular scale to achieve optimal catalytic efficiency.
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