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Abstract: Understanding neck pain is an important societal issue. Kinematic data from sensors may 

help to gain insight on the pathophysiological mechanisms associated with neck pain through a 

quantitative sensorimotor assessment of one patient. The objective of this study was to evaluate the 

potential usefulness of artificial intelligence with several Machine Learning (ML) algorithms in 

assessing neck sensorimotor performance. Angular velocity and acceleration measured by an inertial 

sensor placed on the forehead during the DidRen laser test in thirty-eight acute and subacute non-

specific neck pain (ANSP) patients were compared to forty-two healthy control participants (HCP). 

Seven supervised ML algorithms were chosen for the predictions. The most informative kinematic 

features were computed using Sequential Feature Selection methods. The best performing algorithm 

is the Linear Support Vector Machine with an accuracy of 82% and Area Under Curve of 84%. The 

best discriminative kinematic feature between ANSP patients and HCP is the first quartile of head 

pitch angular velocity. This study has shown that supervised ML algorithms could be used to classify 

ANSP patients and identify discriminatory kinematic features potentially useful for the clinicians in 

the assessment and monitoring of the neck sensorimotor performance in ANSP patients. 

Keywords: Artificial intelligence, Supervised Machine Learning; Kinematics; Head rotation test; 

Neck pain. 

 

1. Introduction 
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Understanding neck pain is an important societal issue [1, 2]. The overall prevalence of neck pain in 

the general population ranges from 0.4% to 86.8% and is higher in women than in men [3]. It ranks 

fourth in terms of years lived with a disability [1, 2]. The majority of patients with neck pain are now 

classified as experiencing a "non-specific" neck disorder [4-6], meaning neck pain that occurs without 

trauma, signs or symptoms of major structural pathology, neurologic signs or specific pathology[4]. 

Acute or subacute non-specific neck pain (ANSP) means that the pain has been present for less than 

three months [4, 7]. The assessment of sensorimotor function, a generic term for tests that encompass 

all afferent and efferent information flows and central integration mechanisms that contribute to joint 

stability [8], has demonstrated its importance for a better understanding of the pathophysiological 

mechanisms associated with chronic neck pain [9]. Indeed, the assessment of sensorimotor function, 

especially through kinematics of the head rotations, seems promising for the identification of chronic 

neck pain [10]. Nevertheless, identification based on sensorimotor evaluation requires the ability to 

know what would characterize neck pain in terms of the kinematic features of movement. 

Sensorimotor assessment of neck motion based not only on position degrees of freedom but also on 

velocity and acceleration features (e.g peak and average velocity) appears promising because it has 

high sensitivity and specificity [10, 11].  

 

Identifying kinematic features from time series and comparing them between groups, e.g., to evaluate 

treatments or classify neck pain motion across ageing, is a widely used method [11-15]. Here we focus 

on a peculiar test called DidRen laser test, designed to assess sensorimotor control of the neck and 

about which the interested reader will find detailed information in [14-16]. The DidRen laser test 

consists of a standardized task in which yaw rotations of the head are performed from "target to 

target" in the same sequence. These are fast, accurate, and small-amplitude rotations (±30°) of the 

head in response to real visual targets to be hit by a laser beam placed on the subject's head [17].  

However, such a methodology removes a significant amount of information from the raw time series. 

This could lead to false-negative results in statistical inference. Resorting to artificial intelligence (AI) 

techniques may lead to another type of analysis, i.e., “the machine” should find the relevant 

specifications of time series. The present study is devoted to the latter case.  

 

AI is defined as a field of science and engineering concerned with the computational understanding 

of what is commonly referred to as intelligent behavior and the creation of artefacts that exhibit such 

behavior [18]. Machine learning (ML) is defined as a subfield of AI as follow: " Machine learning is a 

branch of artificial intelligence that systematically applies algorithms to synthesize the underlying 

relationships among data and information” [19]. ML provides an experiential "learning" that can be 

related to human intelligence as ML can improve its analyses by using computer algorithms. There 

are two main forms of ML: supervised and unsupervised [20]. In supervised ML (SML), the 

algorithms are provided with training data that are analyzed for the features that are important for 

classification and labelled. The model is then "trained" on this data before being tested on unlabeled 

data. In our case, the data will be measured in head rotations. In SML, data must be first labelled by 

a clinician (painful or not for example) so that the model can learn to interpret them through pattern 

recognition. Then, the model is tested with unlabeled data to obtain an interpretation result [21, 22]. 

Several algorithms can be trained for pattern recognition such as logistic regression, support vector 

machine, decision tree, random forest, naïve Bayes or K-nearest neighbor [20]. Patterns may be 

representative of various features, among which pathology and pain, see e.g. [23].  
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The first aim of this work was to evaluate the discriminative ability of AI and SML methods in 

sensorimotor assessment of yaw angular displacement of the head in patients with ANSP patients 

compared with healthy control participants (HCP) with data from a previous study [15] obtained 

during the DidRen laser test [14, 16, 17]. A second aim of this work was to illustrate the potential of 

SML for clinicians in musculoskeletal physiotherapy [24]. In ecological situations, neck kinematics 

should be quickly assessed by a therapist using thresholds designed to identify relevant impairments 

in the history of patients with neck pain. We test whether SML can provide such kinematic values 

and therefore has predictive value for ANSP.  

 

2. Materials and Methods 

2.1. Patients and participants 

This study included 80 subjects (38 ANSP patients and 42 HCP) from a previous study [15]. Data 

were collected from February to December 2019. ANSP patients diagnosed by general practitioners 

were recruited from a consecutive sample in a private manual therapy center in Brussels, Belgium. 

Inclusion criteria for ANSP patients were acute-subacute (< 3 months) non-specific neck pain with a 

Neck Disability Index (NDI)  8% [25] and a Numeric Pain Rating Scale (NPRS) > 3 [26-30]. HCP were 

recruited by one of the authors (RH) from a sample of convenience from colleagues at the university 

hospital and from acquaintances. They were included if they reported no neck symptoms: NDI <  8% 

[25], NPRS = 0 [26], and no pain on active head rotation and/or manual spinal assessment [31]. 

Characteristics of the ANSP patients and HCP are listed in Table 1. All subjects signed an informed 

consent form. The study was approved by the Academic Bioethics Committee (https://www.a-e-c.eu, 

Brussels, B200-2018-103) and conducted in accordance with the Declaration of Helsinki. The authors 

confirm that all ongoing and related trials for this drug/intervention are registered 

(ClinicalTrials.gov: 04407637).  

 

Table 1 Characteristics of the acute and subacute non-specific neck pain (ANSP) patients and healthy 

control participants (HCP). P-values resulted from t-test for age and BMI, Mann-Whitney U-test for 

NDI and NPRS, and Chi-2 for gender. 

 ANSP patients (n=38) HCP (n=42) P-values 

Age (years), mean ± SD 46.2 ± 16.3 24.3 ± 6.8 < 0.001 

Gender n (men/women), (%) 21 (55%)/17 (45%) 27 (64%)/15 (36%) 0.55 

BMI (kg m-2), mean ± SD 23.5 ±3.2 21.5 ±4.2 0.014 

NDI (100), median [Q1-Q3] 22 [16-31.5] 0 [0-0] < 0.001 

NPRS, median [Q1-Q3] 6 [4-7] 0 [0-0] < 0.001 

BMI: body mass index, NDI: neck disability index, NPRS: numeric pain rating scale 

 

2.2. Protocol 

 

The protocol was described in a previous study [15]. It essentially involved assessment of fast neck 

yaw rotations with the DidRen laser test [14, 16] for ANSP patients and HCP, completed by manual 

examination of the painful spinal region for segmental tenderness. For ANSP patients, the manual 
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examination served to confirm familiar pain and guide the treatment. For HCP, thanks to its high 

sensitivity (92%), the manual examination was used to exclude HCP if they had pain at one or more 

levels of the cervical spine and confirm that they are not healthy in the neck [31]. The DidRen laser 

test was used to standardize the rotational yaw movements of the participant’s head. Briefly, 

participants wore a helmet to which a laser was attached. They pointed the laser as fast as possible at 

three targets equipped with photosensitive sensors (Fig 1A,B). The angular separation of targets is 

30°, and the sequence was fixed: center-left-center-right-center. Participants were asked to perform 

the sequence as fast as possible.  

 

Fig 1. Description of the DidRen laser test. (A) Rear view of head position in front of the targets. (B) 

Schematic top view of the experimental setup with the three photosensitive sensors. The reference 

frame of the sensor is displayed when the head is in rest position. Coordinates system used in the 

study is also shown with the yaw (X-axis), pitch (Y-axis), and roll (Z-axis) rotations of the head during 

the test. (C) Helmet worn by an HCP (here RH) with laser on the top of the head and DYSKIMOT 

inertial sensor on the forehead.  

 

During the DidRen laser test, head angular displacement kinematics was recorded in 3D (yaw, pitch, 

and roll) using the DYSKIMOT inertial sensor [32]. The detailed description of the sensor can be 

found in the study by Hage et al. [32]. The sensor consists of a 3‐axis accelerometer, a gyroscope and 

magnetometer, and a temperature sensor. These internal components respectively measure 

acceleration (in g, ±16 g), angular velocity (in °/s, ± 2000 °/s), and magnetic field (in gauss, ±16 gauss). 

The sensor recorded the motion at a sampling frequency of 100 Hz. The DYSKIMOT sensor was 

placed in front of the helmet (Figure 1C), with the yaw-axis (or X) in the vertical direction. The pitch-

axis (or Y) was aligned with subject’s medio-lateral axis at the start of the test and the roll-axis (or Z) 

was aligned with the antero-posterior axis. The head rotation demanded in the DidRen laser test is 

oriented along the yaw-axis. Note that the subjects were not instructed to realize pitch or roll rotations 

of the head during the test. 
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2.3 Data analysis  

2.3.1 Dataset and pre-processing 

The dataset consists of 7 time series for each participant: time, angular velocity (three components 

labelled GyrX, GyrY, GyrZ), and acceleration (AccX, AccY, AccZ). Then, a pre-processing procedure 

was applied to convert each time series into a summary format for all participants. Each time series 

is summarized with 7 statistical descriptors: 1st, 2nd and 3rd quartiles, mean, minimum, maximum, and 

standard deviation. The result is a dataset with 186 inputs and 42 features (6 time series x  7 

descriptors). Each set of statistical descriptors is labeled as ANSP (value 1) or HCP (value 0). 

 

2.3.2 ML algorithms and determination of the best performer 

It is generally difficult to determine a priori which ML algorithm performs best on a given dataset 

[33]. Therefore, several algorithms were tested to determine the most appropriate for classifying 

ANSP patients and HCP: K-Nearest Neighbor (KNN), Linear Support Vector Machine (Linear SVM), 

Non-linear Support Vector Machine Radial Basis Function (SVM RBF), Decision Tree (DT), Random 

Forest (RF), Adaptive Boosting (AdaBoost), and Gaussian Naive Bayes (GaussianNB). 

 

The comparison between selected algorithms was based on metrics such as accuracy and the Area 

Under Curve (AUC) score, computed from the Receiver Operating Characteristic (ROC) curve. These 

metrics are only meaningful if the predictions are based on data that the ML algorithms have never 

learned. Therefore, the dataset was randomly split into two parts. The first part is the “training set”, 

which consists of 80% of the data set used to train the ML algorithms. The second part (remaining 

20%) is the “test set” used to make the predictions with the trained ML algorithms. The validation of 

the ML algorithms is done by n-fold cross-validation [34]. To minimize the biases associated with the 

training dataset, 100 different cross-validations were performed on mixed data for each selected ML 

algorithm. The hyperparameters of the ML algorithms were optimized using the Grid Search method 

[35] that finds the best combination of fixed hyperparameters based on n-fold cross-validation. 

 

For KNN, the optimized parameters were the following: the number of neighbors (n_neighbors: 3, 5, 

8, 10), the weighting function (weights: uniform, distance) and the algorithms used to compute the 

nearest neighbors (algorithms: Brute-Force (BF KNN or BF KNN), kd_tree, auto, ball_tree). For Linear 

SVM, different values for the regularization parameter or C-parameter (0.1, 1, 10, 100, 1000) were 

used in the evaluation to test the dependence of the approach on the C-parameter. For SVM RBF, the 

C-parameter (0.001, 0.01, 0.1, 1, 10, 100) and the kernel coefficient Gamma (0.001, 0.01, 0.1, 1, 10, 100) 

parameter were optimized. For DT, the optimized parameters were the maximum depth of the tree 

(max_depth: 1, 5, 10, 100), the function to measure the quality of the splits (criterion: gini, entropy) 

and the strategy to select the split nodes (splitter: best, random). For RF, the optimized parameters 

were the maximum depth of the tree (max_depth: 1, 5, 10, 100), the number of trees in the forest 

(n_estimators: 1, 5, 10, 100), the number of features considered in the search for the best split 

(max_features: 1, 5, 10, 100). For Adaboost, the optimized parameters were the maximum number of 

estimators at which boosting stops (n_estimators: 1, 5, 10, 50, 100, 500) and the weight applied to each 

classifier at each boosting iteration (learning_rate: 0.000001, 0.001, 0.1, 1, 5, 10, 100). For GaussianNB, 

the optimized parameter was the ratio of the largest variance of all features added to the variances 

for computational stability (var_smoothing: 0.0000001, 0.01, 1, 10, 100). 
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All the computations related to the determination of the best performer were made in Python 3.8 and 

SciKit-Learn 1.0.2 software. 

 

2.3.2 Determination of most informative kinematic features and logistic regressions 

The most informative kinematic features, i.e., the features that trigger the most predictions, were 

computed by using the Sequential Feature Selector (SFS) forward and backward [36]. The backward 

SFS removes the poorest features one by one, while the forward SFS identifies the best combination 

of features. In both cases, the result is a list of kinematic features that performed best according to the 

AUC score. Each SFS was run 700 times (7 ML algorithms x 100 random data repartitions). Once the 

most informative kinematic feature was identified, a logistic regression was performed by using it, 

and the accuracy of this logistic regression was computed. Another logistic regression on total 

DidRen laser test duration was also performed to compare the present results to the unique outcome 

of original DidRen laser test [17].  

 

All the computations related to the determination of the most informative features and ML 

algorithms were made in Python 3.8 and SciKit Learn 1.0.2 software. 

 

3. Results 

3.1 Optimal hyperparameters and performance metrics of ML algorithms 

Optimal hyperparameters are presented in Table 2. Performance metrics of the selected ML 

algorithms are given in Table 3. The least performing ML algorithm is the KNN, and the best 

performing one is the linear SVM with an accuracy of 82 % and AUC of 84%. We show in Figure 2 

the ROC curve of the Linear SVM, which is the best ML algorithm we found to classify ANSP patients 

and HCP.  

 

Table 2: Optimal hyperparameter values: Number of neighbors (n_neighbors), Regularization 

parameter (C-parameter), Kernel coefficient (gamma), maximum depth of the tree (max_depth), 

number of trees in the forest (n_estimators), and number of features to consider when looking for the 

best split (max_features).  

ML algorithm Hyperparameters 

BF KNN n_neighbors=5,weights="distance" 

Linear SVM kernel="linear", C=10 

SVM RBF gamma=0.001, C=100 

DT max_depth=1,criterion="entropy", splitter="best" 

RF max_depth=10, n_estimators=100, max_features=10 

BF KNN: Brute-Force K-Nearest Neighbors, SVM: Support Vector Machine, RBF: 

radial basis function, DT: Decision Tree, RF: Random Forest 

 

 

Table 3: Performance metrics of the selected ML algorithms. 
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ML algorithm Accuracy AUC score 

BF KNN 0.66 ± 0.03  0.51 ± 0.07 

Linear SVM 0.82 ± 0.03 0.84 ± 0.04 

SVM RBF 0.65 ± 0.05 0.57 ± 0.09 

DT 0.74 ± 0.03 0.70 ± 0.04 

RF 0.76 ± 0.03 0.76 ± 0.04 

AdaBoost 0.75 ± 0.04 0.76 ± 0.05 

GaussianNB 0.77 ± 0.03 0.82 ± 0.03 

BF KNN: Brute-Force K-Nearest Neighbors, SVM: Support 

Vector Machine, RBF: radial basis function, DT: Decision 

Tree, RF: Random Forest, AdaBoost: Adaptive Boosting, 

GaussianNB: Gaussian Naive Bayes, AUC: area under 

curve 

 

 

Figure 2: Receiver Operating Characteristic (ROC) curve of Linear SVM (in blue). The dotted red line 

represents the worst possible scenario, a random classifier.  

 

3.2 Most discriminative features and logistic regressions 

The most discriminative feature, regardless of the ML algorithm and SFS, was the 1st quartile of head 

pitch angular velocity (or GyrY), which ranked first 813 times on 1400. The second most 

discriminative feature was the median of head pitch angular velocity (ranked first 444 times on 1400). 

Thus, the pitch angular velocity appears to be the best discriminating feature to differentiate ANSP 

patients and HCP assessed with the DidRen laser test.  

 

A logistic regression based on the median of head pitch angular velocity led to an accuracy of 77%. 

A logistic regression based on total duration of the DidRen test led to an accuracy of 63%. 

 

 

 

4. Discussion 
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Our findings showed the effectiveness of the kernel linear SVM classifier in distinguishing ANSP 

patients from HCP. The accuracy of the linear SVM was 82% and the AUC score was 84%. The 

interpretation of the AUC score should be evaluated in terms of the importance given to its accuracy. 

We can assume that the medical community in the field of oncology prefers an AUC score close to 

100%. Considering, on the one hand, the musculoskeletal field and, on the other hand, in relation to 

the non-specific pathology, the comparison between ANSP patients and HCP, which shows a great 

variability of the results [37], an AUC score higher than 80% can be considered satisfactory. 

 

Seven time series (time and kinematic data) related to yaw, pitch, and roll angular displacement and 

velocity of the head, which can be easily acquired with a single inertial sensor, were used to train the 

selected ML algorithms. However, regardless of the ML algorithm and SFS, not all axes of head 

motion have good discriminative information, as the two best discriminating kinematic features were 

related to head pitch. The accuracy was best with the linear SVM and lowest with all other selected 

ML algorithms, such as the non-linear SVM (RBF). The same finding regarding the superiority of 

linear SVM over RBF has already been observed in a study with limited sample size (17 young and 

17 old subjects) aimed at detecting age-related changes in running kinematics [38]. For use in future 

clinical trials with kinematic variables with limited sample size, linear SVM may thus be a suitable 

option.  

 

Like other studies using ML algorithms to detect kinematic changes in healthy or pathological 

subjects [38-41], our study is based on a rather small dataset in terms of typical AI calculations, but 

the results are consistent with the conclusions of [42]. While conducting observational sensorimotor 

assessment studies with large datasets holds promise for improving the understanding and 

management of various pathologies, here, the pathophysiological mechanisms associated with neck 

pain, the use of small datasets may also allow for a reduction in selection bias [42]. In addition, it is 

worth noting that an SVM has already been used in the musculoskeletal field to compare 

temporomandibular patients with control subjects [43]. With a smaller sample (10 patients and 10 

control subjects), they achieved an average predictive accuracy of 60% (P = 0.10) [43]. The linear SVM 

algorithm is affordable with today’s standard devices: a tablet computer could efficiently post-

process the data from any wearable inertial sensor. Note also that a logistic regression based on head 

pitch angular velocity could be easily implemented on any smartphone, but with a lower accuracy of 

77%. 

 

The main discriminatory information used by the linear SVM algorithm to distinguish ANSP patients 

from HCP are the first quartile and the median of head pitch angular velocity. The best two kinematic 

discriminating features differed from those obtained by inferential statistical analysis, suggesting that 

ML approaches are complementary and clinically useful to detect kinematic changes in patients with 

ANSP. 

 

HCP have larger medians and quartiles for head pitch angular velocity (computed from GyrY time 

series) than ANSP patients, making the Y-axis a highly discriminatory direction that should be 

prioritized for future clinical trials with the DidRen laser test. Our results may seem counterintuitive 

at first, because the DidRen laser test consists of a sensorimotor assessment organized around the Z-

axis, i.e., during the execution of yaw rotations of the head. Thus, it would stand to reason that the 

GyrX time series should contain most of the discriminative information. Nevertheless, it is interesting 

to note that the sensorimotor disturbances in ANSP patients may be highlighted by the stronger 
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secondary coupled motion during yaw rotations. There seems to be a reason for this, because 

biomechanically, coupled bending rotations in the cervical spine lead to a compensatory roll rotation, 

which compensates for the yaw rotation of the head, and the associated coupled movements observed 

during pitch head movements [44]. Indeed, in HCP, we can observe that yaw head rotation (55.5 ± 

10.8°) is coupled with a larger pitch motion (16.3 ± 11.4°) than roll motion (4.6 ± 6.2°) [44]. If we apply 

these considerations to patient assessment, this information may be of clinical interest because 3D 

motion analysis may be a useful tool for assessing postural changes in the cervical spine during 

sitting, but also because altered kinematics are associated with decreased performance, e.g., neck 

velocity and neck motion fluidity in functional movement tasks, in people with neck pain [45].  

 

The present discussion suggests that the ML algorithms can provide relevant functional variables 

and thus optimize the prediction of ANSP status during the DidRen laser test. To further illustrate 

this point, we mention that total test duration was the only parameter measured in the original 

version of the DidRen laser test [17]. Logistic regression performed with duration yields lower 

accuracy than that obtained with the median of pitch head rotation alone, the latter parameter being 

favored by linear SVM.  

 

In experimental studies, control and experimental groups are usually formed in such a way that no 

significant difference is observed in parameters such as age, ethnicity, gender, and 

degeneration/maturation stage, except for the variable of interest. In our case, this means that ANSP 

patients and HCP groups should differ only in terms of NDI and NPRS. Age is also significantly 

different in our groups, but we do not believe this is problematic for our purpose. Indeed, ML 

algorithms are designed to distinguish between HCP and ANSP patients. To find out the 

characteristics of ANSP patients, it is logical to compare them with the “healthiest” subjects, i.e., our 

HCP group. On the other hand, a control group with too young subjects would also have led to bias, 

since we have shown in a previous study that the kinematic behaviors recorded with the DidRen 

laser test have a U-shaped or inverted U-shaped age profile, making the differences between young 

and old particularly clear [16]. Because the prevalence of degenerative joint changes increases with 

age [4, 46], possibly leading to movement limitations (yaw rotation steadily decreases between the 

ages of 30 and 60) [47], we selected HCP using a very sensitive manual examination [31]. After this 

examination, positive control subjects (with potential neck disorders) were excluded, and because 

their average age was higher (see [15]: the mean age of the excluded control subjects was 43.3 years), 

the average age of our HCP group decreased compared with the ANSP group. It is worth noting that 

a significant age difference between control and disease subjects was already found in a study aimed 

at developing and determining the predictive performance of ML models to distinguish between 

different subtypes of low-back pain and healthy control subjects [48]. For this purpose, as we did, 

they did not include age as a predictor when constructing the model [48]. 

 

We previously found several differences between ANSP patients and HCP on several features using 

inferential statistical analysis [15]: overshoot, stabilization time, peak speed, time to peak speed, 

average speed, peak acceleration, time to peak acceleration, peak deceleration, time to peak 

deceleration, time between peaks of acceleration and deceleration, time from peak acceleration to end 

of rotation, and angle at maximum speed. Such variables may be seen as relevant classifiers. For 

example, Sarig Bahat et al. [10] showed a sensitivity for right and left yaw rotations of the head of 

91% and 94%, respectively, when calculating peak speed. Roijezon et al. [11] found a sensitivity of 
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74.6% for peak head speed rotation. For other variables, such as the number of peak speeds, Bahat et 

al. determined a sensitivity for right and left head yaw rotations of 73% and 85%, respectively [10]. 

Roijezon et al. determined a sensitivity for the normalized peak speed amplitude of 59.3% [11]. Here, 

our aim was to extend the inferential statistical analysis of [15] with selected ML classifier models. 

Given the responses to the patient data calculated using a classical statistical approach, it is obvious 

that the neck rotation task was performed with a rather important variability in the participants. For 

example, the peak speed was 88.06 (79.70-105.77) °/s in ANSP patients and 109.73 (87.84-128.58) °/s 

in HCP (written under the form median [Q1-Q3]). This may explain the different values of sensitivity 

between, our study and  [11]. The difference between these values can be explained, of course, by the 

different evaluation methodology used in the these studies, but mainly, and this characterizes our 

approach, by the conversion of functional variables into scalar variables, which removes a significant 

part of information contained in the original variables [49]. In statistical inference, this can 

theoretically lead to results that do not correspond to reality [49]. Indeed, this could lead to false 

negative results or to a lack of precision in the prediction [49]. 

 

In summary, we have shown that AI can help identify patients suffering from neck pain using the 

DidRen laser test augmented by an inertial sensor. AI is therefore clinically useful information that 

can improve patient management. It can either predict the patient's condition based on the time series 

of angular velocity and acceleration or suggest the kinematic features most likely to distinguish neck 

pain from healthy individuals. In a sense, then, AI can suggest improvements to existing clinical tests. 
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