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Low-cost sensors, i.e., sensors typically cheaper than USD 100, are currently available,
allowing the measurement of a wide range of physiological signals. These signals contain
valuable information that can be used to increase the understanding of any physiological
function of clinical interest. Hence, low-cost sensors are expected to play a key role in
the future of clinical practice and medical diagnosis. In particular, they may facilitate the
collection of big data and allow broader diffusion of evidence-based medicine, which is
essential to improving medical practice. Low-cost sensors may also be of interest in virtual
or augmented reality applications, including rehabilitation. Their use is associated with
several challenges: First, sensors should be accurate enough to unambiguously compute
relevant indicators from biosignals, in particular in patients with medical conditions.
Second, the designed sensors should be as non-intrusive and ready-to-use as possible
with fast calibration procedures. Third, they require user-friendly and cross-platform
interfaces that provide secure data storage and easy data analysis and visualization. We
invited authors to submit their latest results in the field, either research articles or reviews;
12 papers were accepted for publication in this Special Issue of Sensors, entitled “Low-Cost
Sensors and Biological Signals.” They are summarized in the next paragraphs.

Low-cost sensors allow for the full monitoring of human motion. In particular, inertial
measurement units (IMUs) and magnetic angular rate and gravity sensors (MARGs) are
compact devices able to measure the 3D acceleration and angular speed of a given anatom-
ical landmark with an accuracy comparable to gold-standard material only available in
research centers [1]. As shown in this work through the study of a clinical test assessing
neck mobility, the precision reached is sufficiently high for daily use in clinical practice.
More generally, physiotherapy is a field that can benefit from such motion sensors. Cap-
pelle et al. [2] present a low-complexity wireless motion sensor based on IMUs designed
to be physiotherapist-friendly. The small size and low weight as well as the wireless data
transmission are needed to reduce the impact on patient motion and to allow for easy
positioning on a patient’s body.

Regarding daily use, calibration has to be as fast as possible compared to the typical
time a clinician spends with a patient. Accurate calibration will allow the computation
of angular position from acceleration and angular velocity. Angular amplitudes are one
of the most commonly used indices to assess joint mobility. Calibration procedures are
presented [3] for IMUs, leading to an accuracy of less than 3.4◦ on lower limb amplitude
measurements. These results are coherent with those of Hage et al. [1], although Hage et al.
focused on the neck rather than lower limbs. In real-life situations, some perturbations
cannot be avoided, which jeopardize calibration efforts, e.g., magnetic disturbances for
MARGs. It may be necessary to add extra information to compensate for the perturbations.
An example is given in Wöhle and Gebhard [4], who show that eye-tracking data can be
used to improve the accuracy on MARG head-orientation measurements.
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Once human motion is measured, it can be used as an input signal to interact with
a virtual environment or with more classical videogames. An example is provided in
Foreman and Engsberg [5], who show that Microsoft Kinect® is a reliable tool for assessing
trunk motion. The coupling between low-cost motion sensors and serious videogames
opens the possibility to innovative methods in rehabilitation. A review [6] shows that the
use of videogames and motion-capture systems in rehabilitation contributes to the recovery
of the patient, mostly in post-stroke rehabilitation. Sensors may be relevant not only in
rehabilitation but also in helping patients to improve their motor abilities and to recover
autonomy. Krasovsky et al. [7] focus on adults and children with motor impairments such
as stroke or cerebral palsy. They show that a spoon instrumented with an IMU allows for a
clinically feasible assessment of self-feeding.

Kinematics is obviously not the only method to assess physical activity. Two other
types of biosignals are discussed [8,9]. In Tahir et al. [8], a systematic design and char-
acterization procedure for different pressure sensors is proposed for building low-cost
smart insoles for detecting vertical ground reaction force in gait analysis. In Wójcikowski
and Pankiewicz [9], a new algorithm for the measurement of the human heart rate us-
ing photoplethysmography is presented. The algorithm is less demanding in computing
power than many others, which is an important advantage regarding the autonomy of
wearable devices.

Low-cost sensors may not only be useful in characterizing an individual’s state: they
can also offer ways to classify individuals in different groups. Gabis et al. [10] show that
accelerometers provide enough information to discriminate between typically developed
children and children with autism spectrum disorder via a simple motor task (star jump).
Li et al. [11] report that the kinematic patterns measured by IMUs are significantly different
between the Baduanjin teacher, senior students, and junior students: changes in kinematics
are, in this case, related to one participant’s experience.

A direction in which low-cost sensors may be applied is in affective technologies:
biosignals measured by sensors (temperature, skin humidity, etc.) reflect the emotional
state of an individual. Such signals may be communicated to a wearable device worn by
another person to enhance the methods of communicating with each other [12].
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