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Abstract: Low back pain (LBP) obviously reduces the quality of life but is also the world’s leading
cause of years lived with disability. Alterations in motor response and changes in movement patterns
are expected in LBP patients when compared to healthy people. Such changes in dynamics may be
assessed by the nonlinear analysis of kinematical time series recorded from one patient’s motion.
Since sample entropy (SampEn) has emerged as a relevant index measuring the complexity of a given
time series, we propose the development of a clinical test based on SampEn of a time series recorded
by a wearable inertial measurement unit for repeated bending and returns (b and r) of the trunk.
Twenty-three healthy participants were asked to perform, in random order, 50 repetitions of this
movement by touching a stool and another 50 repetitions by touching a box on the floor. The angular
amplitude of the b and r movement and the sample entropy of the three components of the angular
velocity and acceleration were computed. We showed that the repetitive b and r “touch the stool”
test could indeed be the basis of a clinical test for the evaluation of low-back-pain patients, with an
optimal duration of 70 s, acceptable in daily clinical practice.

Keywords: low back pain; sample entropy; regularity; complexity; inertial measurement unit; motion
analysis; variability

1. Introduction

Low back pain (LBP) is a complex condition with multiple factors contributing to
both pain and disability, as well as reduced quality of life [1]. Out of 301 conditions and
188 countries, LBP is the leading cause of years lived with disability [2]. Musculoskeletal
conditions account for one third of first-line consultations [3]. On the socio-economic level,
considerable direct and indirect costs are generated by acute LBP, which affects nearly 84%
of the population at some point in their lives, and especially by chronic non-specific LBP,
which has a prevalence of 18.3% to 23% and varies according to economic status, sex, and
age [4–7].

1.1. Movement Variations

The presence of persistent chronic pain presumably induces an alteration or adap-
tation of motor responses in participants with chronic LBP. Developing new diagnostic
tools leading to the identification and assessment of these sensory-motor changes is a
current challenge in the field, with the aim of eventually building better rehabilitation
programmes [8].
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Sensorimotor control is inherently variable for each movement in the same individual
and from one individual to another [9]. The idea that lumbopelvic movement features
change in patients with LBP compared to healthy participants has already been explored
in previous works. In [10], it was shown, through a maximum trunk flexion and return
test performed three times consecutively with a one-minute rest phase between each
repetition, that the displacement of the instantaneous lumbopelvic centre of rotation is
smaller and less variable in LBP patients than in healthy subjects and in participants
who have recovered from an episode of LBP. This smaller-amplitude and less variable
displacement is expected to increase the risk of tissue damage by exposure to some form
of overload. The links between variability and overload have also been explored in [11]
by resorting to surface EMG. It appears that, in healthy participants, variability in muscle
activity avoided overloading an area and allowed for better endurance during repeated
tasks [11]. Such variations of muscle activity should have an observable impact on kinematic
data, on which we focus in the present study.

A systematic review and meta-analysis of 43 studies analysed and compared lum-
bopelvic kinematics in participants with and without LBP [12]. The authors concluded that
people with LBP tend to have reduced range of motion and speed of movement and poorer
proprioception, while healthy participants can adapt to fatigue by performing less stereo-
typed and more varied lumbar movements that reduce the load on fatigable structures.
People without pain show a more complex and less predictable rate of lumbar movement
with a lower degree of structure in its variability, whereas people with LBP do not [13]. This
last point highlights the two different concepts related to the notion of variability, namely
the range of variation (which we call variability) and the complexity of variation (which
we call complexity).

1.2. Complexity and Entropy

Movement variability is inherent to human motion and our meaning for the concepts
of variability and complexity must be further discussed so that the results of a clinical test
using these quantities can be understood and interpreted.

In “traditional”, linear, analysis of the movement, one measures average parameters
such as speed, frequency (number of repetitions over time) and amplitude. The variability
is assessed by calculating the corresponding standard deviations (SD), measuring the
magnitude of variability. However, most human movements have nonlinear features, and
an exclusive linear modelling may be a source of misinterpretation [14]. It is therefore
necessary to move towards nonlinear analysis to assess more subtle (but still related to
clinical observations) features of movement such as predictability or complexity. A recent
study indicated that pain induces, among other things, a reduction in the degrees of freedom
available during natural movements which becomes more evident during more demanding
tasks, and concluded that chronic LBP reduces the complexity of movements [15]. Although
it can be readily concluded that there is an added value in including non-linear indices as
part of an overall statistical protocol, the best index to choose is still a matter of debate [16].
There is nevertheless a consensus about the relevance of sample entropy (SampEn) to assess
the complexity of a given time series [17–19].

Initially, entropy is a concept that deals with the randomness and predictability of a
system, a greater entropy being associated with more randomness and less order in the
observed system [16]. Therefore, entropy assesses the complexity of a given time series
variability. In a historical, thermodynamical sense, computing entropy would demand
an infinite time series. On the contrary, clinical measurements often result in short time
series. SampEn is a way of computing entropy reliable for short time series and capable of
providing more clinically coherent parameters [16,20,21].

For a test to be feasible in clinical practice, it is important that it is time-limited
with a secure amplitude for the patient according to the contingencies of that practice.
Taking measurements over a period of one minute or less (optimal duration), with the
highest possible accuracy, meets this contingency criterion. Comparing different test
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amplitudes and durations could therefore be useful. It has been shown that SampEn is
independent of the length of the data by remaining conservative under 200 data points [17]
and that SampEn shows relative consistency with another way of computing entropy called
Approximate Entropy [22,23]. SampEn allows a relevant assessment of the complexity of
short time series in human motion [22].

Recent studies have shown that it is not only possible to differentiate LBP patients
from healthy participants with an accuracy of 96% but also, via a machine learning system
analysing kinematic data from two Inertial Measurement Units (IMU), to separate LBP
patients into two main groups, high vs. low-medium risk [24–26]. These studies provided a
diagnosis based on raw data from the IMU without any physiological explanation, working
as a “black box” trained with sample data. We hypothesise that the analysis of the variabil-
ity of these measurements should provide additional information to better understand and
guide the clinical management of LBP patients. More precisely, an LBP patient is expected
to show less variability in its movement pattern due to pathology, resulting in a decrease
in entropy—this feature is actually expected in general when comparing healthy subjects
to patients [14]. In the context of a repeated lumbo-pelvic bending and return (b and r)
movement, for a condition such as LBP, we therefore expect SampEn of the angular velocity
with the horizontal axis in the sagittal plane to provide clinical information on the com-
plexity of this movement and therefore also on the adaptive capacity of the motor control
system. The use of low-cost IMUs and dedicated user-friendly software, nowadays widely
affordable, should allow clinicians to have access to kinematic data in the management of
LBP [27].

1.3. Lumbar Flexion

To develop a physical test that is easy to perform in primary clinical practice, the choice
of b and r, and thus movements in the sagittal plane, seems appropriate [10,11,28,29]—it is
a movement used in many situations of daily activities. Pelvic movements in the sagittal
plane are part of lumbopelvic flexion-extension [28]. The management and follow-up of
LBP requires assessment and reassessment of b and r, which is a simple and very common
movement in the lumbopelvic region. Currently, there is still a lack of availability and
clinical feasibility of tools and techniques, mainly due to the limitation of using equipment
and methods designed primarily for research laboratories [24]. There is a real need for
easy-to-use and inexpensive tools that can provide recordable data to quantify movement
variability in the daily clinical assessment and management of patients with LBP.

The objectives of this study are: (1) to determine the length of the time series needed
to assess the variability and complexity of the kinematic data in the sagittal plane recorded
by a single IMU; (2) to study the relevance of SampEn in this evaluation; (3) to define the
optimal b and r amplitude for using this test in a clinical setting.

2. Materials and Methods
2.1. Participants

The measurements were taken on 25 healthy volunteers recruited by convenience
among the students or teachers of the Haute Ecole de Louvain en Hainaut (HELHa,
Montignies-sur-Sambre, Belgium). The recruitment announcement was launched via the
HELHa intranet system. The study was validated by the Academic Bioethics Committee
(https://www.a-e-c.eu/ (accessed on 22 June 2020)) under the number B200-2020-092.

We recruited participants based on the following inclusion criteria: healthy partici-
pants between 18 and 30 years old, belonging to the physiotherapy or occupational therapy
section of HELHa. To participate in the study, participants had to sign an informed consent
form. We rejected participants with one or more of the following noninclusion criteria:
participants with a knee prosthesis, a hip prosthesis or having undergone a spinal operation,
participants with any surgical history of less than 12 months, participants with scoliosis
or any other spinal deformity, participants with musculoskeletal disorders, participants

https://www.a-e-c.eu/
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who have engaged in strenuous physical activity within 24 h prior to the measurement,
and participants with any pain experienced during the measurement.

2.2. Measurements

Participants were equipped with a new sensor system called DYSKIMOT, developed to
be low-cost; see Ref. [30] for a detailed presentation. The DYSKIMOT sensor is a magnetic
angular rate and gravity sensor based on the IMU LSM9DS1 micro-electro-mechanical
system, with a mass of 10.44 g and a size of 3 × 3 cm (Figure 1c). It consists of a 3-axis
accelerometer, gyrometer and magnetometer, as well as a temperature sensor. These internal
components measure acceleration (in [g], ±16 [g]), angular speed (in [◦/s], ±2000 [◦/s])
and magnetic field (in [gauss], ±16 [gauss]), respectively. The device, whose sensitivity
depends on the selected range, can operate between −40 and +85 ◦C. Communication
with other electronic components is via a Serial Peripheral Interface bus (SPI) or Integrated
Circuit Protocol (I2C). The data, recorded at the maximum achievable sampling rate of
100 Hz, is transmitted to a PC via an Arduino Uno Rev 3 and a USB cable (RS232 serial link)
(Figure 1b). The Arduino contains the data retrieval program, using the SparkFun library
provided for this sensor, which is then transferred to a dedicated acquisition software [30].
In studies addressing lumbopelvic movements, the sensors were most often positioned at
the top of the lumbar spine opposite to the 10th and 11th thoracic vertebra (T10, T11) or to
the 1st lumbar vertebra (L1) and at the level of the sacrum on the 1st or 2nd sacral vertebra
(S1, S2) and laterally on the right thigh [31–34]. Some authors also placed the sensor at
the xyphoid appendix [34]. In this study, we were interested in pelvic movements only.
The DYSKIMOT inertial sensor was therefore positioned on the skin facing S2 with the
X-axis pointing to the left, the Y-axis pointing upwards and the Z-axis pointing backwards
(Figure 1c).

Figure 1. (a) Starting position of the participant. The visual cue (black rectangle) is observable on
the wall and the metal bars are observable on the left and right sides of the picture. (b) The sensor
system. The IMU is below, while the controller is above. (c) A zoom on the sensor as placed on the
participant.
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The task asked to our participants was much in the spirit of [11], in which healthy
participants and chronic LBP patients were asked to move a box (40 × 20 × 30 cm) weighted
with a 5 kg weight repeatedly between 2 superimposed shelves during 25 cycles (200 s).
The duration of the task was chosen based on pilot tests confirming the patients’ ability to
perform the task successfully without having to interrupt it due to pain or excessive fatigue.
In our study, participants were asked to perform a series of 50 repetitions of lumbopelvic
b and r movements at a comfortable pace. We informed them that they could stop the
repetitions if they felt pain. Each participant had to perform the b and r test twice under
two randomised conditions. The first condition consisted of touching an 11.4 cm-high
cardboard box placed on the floor 10 cm from the participant’s feet, as shown in Figure 2a.
The second condition consisted of touching a four-legged stool 46 cm high, also placed 10
cm from the participant’s feet (Figure 2b). On return, the subject was asked to touch with
each of their hands each of the metal bars placed behind them. The bars were placed at the
height of the hands of each subject in the standing position, 34 cm behind the vertical of
the toe marker.

Figure 2. (a) Starting position for b and r box test; (b) starting position for b and r stool test. Box and
stool are placed 10 cm in front of the participant’s toe marker.

2.3. Protocol

Anthropometric characteristics of all participants were first measured before the
experiment: age, height, body mass. The posterior-superior iliac spines were located by
palpation, and an imaginary line drawn between them allowed the locating of the second
sacral vertebra (S2) which is situated in the middle of this line. The sensor was then attached
to the participant’s skin with double-sided hypoallergenic adhesive tape.

Before starting the measurement, a visual cue was placed 2 to 4 m in front of the
subject at a height of 1.65 m to facilitate the return to the initial position and to ensure that
the gaze was horizontal in this same position. The participant stood in the upright position
and touched the two horizontal guides placed behind them. The head was in the Frankfurt
plane with the gaze directed towards the visual cue placed in front of them. The examiner
then gave instructions: “Starting from the initial position, lean forward and touch the two
targets on the stool/box. Then stand up and return to the starting position. Repeat the
movement 50 times quickly but without rushing and while remaining comfortable for you.
All without changing the position of your feet during the test and without talking.”

Ten trial movements were carried out to ensure that the participant had fully integrated
the instructions for both tests (box and stool) and to familiarise themselves with the
environment. After this test, the participant was given 2 min of rest (sufficient time due to
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the low intensity of effort for the ten repetitions) before the measurement began. After this
rest period, the participant performed the 50 flexion-extension repetitions. Participants were
randomly allocated to two groups, one starting with the box and the other starting with
the stool. Randomisation was performed via the Random® mobile application (Notrobots,
Pordenone, Italy).

The placement and protocol were achieved by the same experimenter. The acceleration
and angular velocity time series were recorded on a PC using dedicated data acquisition
software developed for the DYSKIMOT sensors (see above). The 6 times series are referred
to as AccX, AccY, AccZ (acceleration) and GyrX, GyrY, GyrZ (angular velocity) in the
following. Participants were asked to perform a left–right rotation followed by a return to
the neutral position just before starting the b and r movements. It allowed a localisation of
the start of the 50 b and r movements by visual inspection of the time series. A typical trace
of GyrX is shown in Figure 3. The last point of the series was manually selected as the last
point closest to 0◦/s that ends the last b and r cycle. The typical length of the recorded time
series was not far from 2 min (12,000 points), which is much longer than the typical length
one would expect in clinical applications. For clinicians, tests should be as time-efficient as
possible, and for patients with low back pain, a repeated test should be as short as possible
to avoid aggravating symptoms. To meet these conditions of clinical feasibility, such a test
should not exceed one minute.

Figure 3. Typical trace of GyrX versus time during b and r movements (4 cycles are displayed). The
yellow circle shows the left–right rotation asked before beginning the b and r movements. The first
red line shows the closest point to 0 just before the start of the first b and r cycle, and the second red
line shows the closest point to 0 just after the last b and r cycle, as it can be easily seen.

2.4. Data Analysis

We first compared the length (duration) of the 6 time series from the box-test to
those of the stool-test by using a Wilcoxon signed-rank test. A linear regression of the
box-test duration vs. stool-test duration was also performed. Beyond duration, movement
amplitude is the most obvious parameter to be measured in clinical practice. It is important
to show that the sensor used can compute amplitudes, without needing an extra goniometer.
The angular amplitudes of b and r in the sagittal plane were then calculated by integrating
GyrX for both tests. The successive minimum (mini) and maximum (maxi) angles were
identified, the consecutive amplitudes (Ai = maxi − mini) were computed and the average
amplitude A was calculated for a given test. A paired t-test was made to compare the
amplitudes of the box-test to those of the stool-test.

Regarding variability, its magnitude for a periodic time series may be assessed by
computing its standard deviation (SD). We calculated the SDs of the angular velocities
around the 3 axes for both the b and r box test and the b and r stool test, i.e., SDX, SDY
and SDZ. Comparisons between SDX, SDY and SDZ for both tests were performed by a
Wilcoxon signed-rank test. Linear regression of the box-test SDs vs. stool-test SDs was
also performed. SampEn values were then calculated from the full available time series by
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using a homemade routine based on the definition given in [17,35], relevant for short time
series but longer than 200 points. These values are denoted as SampEn50. Technical details
about SampEn are given in Appendix A.

However, 50 repetitions of a b and r movement may be too time-consuming for a
clinical test performed in daily practice. The duration of the test must meet the criteria of
feasibility and ease of clinical use and those imposed by the minimum length of a time
series to obtain a robust SampEn value. To determine this test amplitude and length,
we calculated the SampEn by splitting our time series into 2 s increments (200 data at
100 Hz). The first 10 s of measurement were ignored to exclude potential habituation
effects, and data after the first 70 s were neglected so that time series with equal lengths
were considered (the fastest participant performed the test in about 70 s). An R routine
was then programmed to calculate SampEn on partial time series, i.e., from 10 to 12 s,
from 10 to 14 s, . . . , from 10 to 70 s. These partial SampEn values were denoted as
SampEn10I, with I = 12, 14, etc. An analysis of the degree of similarity between SampEn50
and the partial SampEn was achieved by Pearson correlations and linear regressions of
the form SampEn10I = k SampEn50 between these values for all participants in both b and
r tests. Through this analysis, we hoped to determine an optimal test duration for all
patients in clinical use, i.e., the SampEn value that was as close as possible to SampEn50
(high precision), but with the shortest possible time series to ensure clinical feasibility as
explained above. The value retained for I is the smallest one such that the coefficient of
determination R2 is above 0.99, with a slope k above 0.95. We consider that a degree of
linkage better than 95% in the prediction of SampEn is satisfactory in daily clinical use. The
95% levels of agreement of differences between the entropy values (Gyr X) were defined
using the method of Bland and Altman [36]. The entropy differences were drawn in relation
to the mean values, and 95% of the differences were expected to lie between the 2 limits of
agreement. These 2 limits of agreement were the mean differences ± standard deviation
expressed as bias ± random error according to Atkinson and Nevill [37].

Computations of the amplitudes, standard deviations, sample entropies, and linear
regression parameters were made with R free software (v. 4.1.0). Statistical tests were
performed by using Sigmaplot (v. 14.0, Systat Software, San Jose, CA, USA) with a 5%
significance level.

3. Results
3.1. Population

Here, 25 participants were selected. One was excluded because of scoliosis. The data
of a second participant could not be analysed, due to the incomplete recording of data by
the DYSKIMOT software during the test. This brought the total number of participants to
23; the population’s features are shown in Table 1.

Table 1. Anthropometric data for our population of 23 healthy participants. Continuous variables are
displayed under the form mean ± SD.

Parameter Mean

Male/Female 10/13
Age (year) 22.5 ± 2.5
Height (m) 1.72 ± 0.1

Body mass (kg) 66.8 ± 10.3
BMI (kg/m2) 22.6 ± 2.5

3.2. Duration and Amplitude

The duration and SDs (amplitude) of the 50 cycles of the b and r movement changed
significantly between the two tests (p < 0.001 to p = 0.002), see Table 2. The correlations and
the linear regression are presented in Figure 4.
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Table 2. Duration and SDs for the 50 b and r cycles. p-values from Wilcoxon signed-rank tests
(duration and SDs) are shown (box versus stool).

Test
Min

Duration
(s)

Max Duration (s) Mean (s) MED Q1 Q3 p-Value

box 76.3 143.3 112.2 ±
18.5 11.5 9.8 12.8

<0.001

stool 72.3 148.4 102.5 ±
20.0 9.7 8.8 11.7

Test SDX (◦/s) p-value SDY (◦/s) p-value SDZ (◦/s) p-value

box 34.6 ± 9.7
<0.001

7.5 ± 2.4
0.002

7.4 ± 2.6
0.002

stool 23.9 ± 7 6.3 ± 2.4 6.2 ± 1.8

Figure 4. Correlation coefficient and linear regression for duration and SDs (amplitude, e.g., SDX) for
the 50 b and r cycles.

We note that both tests lasted at least 72 s, which justifies our choice to truncate both
time series from 10 to 70 s for the calculation of partial SampEn.

3.3. SampEn and Optimal Duration

SampEn50 values are displayed for both tests and for the 6 time series in Table 3. The
minimal (maximal) value was obtained for GyrX (AccX) regardless of the test.

Table 3. Values of SampEn50 for the 6 available time series for both b and r tests and p-values of
Wilcoxon signed rank box-test vs. Stool-test.

Test GyrX p-Value GyrY p-Value GyrZ p-Value

box 0.218 ± 0.106
0.149

0.639 ± 0.083
0.01

0.646 ± 0.108
0.01stool 0.232 ± 0.071 0.607 ± 0.088 0.612 ± 0.073

Test AccX p-Value AccY p-Value AccZ p-Value

box 1.060 ± 0.326
0.796

0.567 ± 0.235
0.988

0.233 ± 0.087
<0.001stool 1.026 ± 0.305 0.578 ± 0.192 0.331 ± 0.125

There was no correlation between the SampEn values of the two b and r tests. All
Pearson correlation coefficients were around or below 0.5. The best (but insufficient)
correlation (but insufficient) coefficient was for AccZ with R = 0.559 with p < 0.01.

Typical linear regressions of SampEn50 vs. SampEn10I are shown in Figure 5. The
evolution of the correlation coefficient GyrX-stool test is shown in Figure 6.
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Figure 5. Typical linear regressions for SampEn50 vs. SampEn10I computed for GyrX in
the b and r stool test; the regression was performed on the 23 participants (black points).
(a) SampEn50 vs. SampEn1012. (b) SampEn50 vs. SampEn1028. (c) SampEn50 vs. SampEn1040.
(d) SampEn50 vs. SampEn1070.

Figure 6. Evolution of the correlation coefficients between SampEn 50 and SampEn 10I for GyrX in
the b and r stool test. All corresponding p-values are <0.01.

4. Discussion

Variability in sensorimotor control should be considered as normal and useful; its
reduction or increase seems to be related to pathology. To quote [38]: “Far from being
a source of error, the evidence supports the need for an optimal state of variability for
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health and functional movement”. The variability in healthy individuals shows a temporal
organisation characterised by a chaotic behaviour that allows the system to be optimally
adaptable. By reducing or increasing its capacity to vary, a biological system loses its
adaptability or stability [38]. This paradigm is exemplified by the results of [39] stating that,
within the possible spectrum of motor control adaptations to pain in LBP patients, two
main phenotypes seem to emerge: increased control or lost control involving, via different
mechanisms, abnormal tissue loading in the lumbar region.

Many joint levels are involved in b and r movement, such as dorsal and lumbar
flexion-extension, pelvic tilt, flexion-extension of the hip, knee, and ankle. In the case
of b and r, pelvic tilt is related to the amplitude ratio of flexion-extension of the hip,
knee, ankle, and dorsal-lumbar region. A limitation induced by using a single IMU is that
movements other than those of the trunk cannot be studied. For example, the foot and pelvic
position influence each other [28]. The stage of flexion-extension influences the level of
synchronisation between the pelvis and the spine during b and r with greater involvement
of the pelvis during the final and initial phases of forward flexion and backward extension,
respectively [39]. Speed is also an important factor that can alter movement strategies to
adapt functionally to reduce stress on structures and avoid pain when LBP patients change
to optimal complexity and adopt a stereotyped lumbopelvic rhythm [40–42].

The use of a sensor allows information to be obtained that goes beyond amplitude: by
recording angular velocity and acceleration, for example, one has access to motor strategies
used to perform the whole motion. In particular, the calculation of SampEn may assess the
complexity of these time series.

Although there is a significant difference between the execution time of the two b and
r tests, these two durations are well correlated with a regression slope approaching 1. This
implies a very small difference in duration between the two tests always in favour of the
box test. Therefore, the execution speeds are higher in the box test than in the stool test. This
higher speed could be an obstacle to the performance of the test in clinical practice. It was
shown in [38] that in a flexion task performed at different speed levels, the asymptomatic
group moved with a progressively higher degree of lumbopelvic coordination as speed and
acceleration increased, whereas the LBP group adopted a uniform lumbopelvic pattern for
all speed levels examined. There is therefore no point in increasing the speed of execution
in a clinical test regarding LBP. This suggests that the stool test should be preferred in
clinical practice. Indeed, the stool test has a significantly lower angular amplitude for a
similar although significantly different duration, resulting in lower angular velocities and
therefore less physical strain for the participant performing the test. This reinforces the
choice by reducing the risk of worsening clinical symptoms and signs in the patient being
tested. However, care should be taken in the use of either test (box and stool) in future
research due to their tendency to be significantly different in the distribution of SD and
SampEn50 values.

As the b and r task takes place mainly in the sagittal plane, the angular velocity
around the transverse axis (X), as mentioned above, shows a greater regularity compared
to those around the other two axes. This more structured pattern leads to a lower value
of SampEn50. It is correlated with the fact that AccZ has the lowest entropy amongst the
accelerations: as seen from the sensor frame, a rotation of the X-axis induces a centripetal
acceleration along the Z-axis. The reason for these lower SampEn values is that both GyrX
and AccZ time series contain kinematic information about the b and r rotations performed,
i.e., the target to touch on the box or stool. This tends to confirm the hypothesis already
put forward, according to which an individual develops a movement strategy aimed at
reducing the complexity to increase the precision of a targeted movement during a task [42].
Along these lines, it can be concluded that the large Sampen50 value for AccX stands for the
fact that no planned linear movement occurs along the X-axis. Note that SD and SampEn
show opposite behaviours when comparing the different directions: this tends to confirm
the different descriptive role played by these two analysis tools.
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The duration of a clinical test involving repeated movements should not be too long,
to obtain and maintain patient compliance. As shown above, a 70 s measurement including
a 10 s habituation phase and a 60 s actual test phase yields SampEn values for the three-axis
accelerometer and three-axis gyroscope that are almost perfectly equivalent to those that
would have been measured over 50 repetitions in the b and r test (R2 and slope equal
to 1 up to software precision). However, satisfactory SampEn values (R2 = 0.99926 and
slope of 0.9516) were already obtained after 18 s of testing. The Bland and Altman analysis
shown in Figure 7 reveal that the mean bias between SampEn50 and SampEn1028 was
−0.0052 ± 0.0105 with 95% limits of agreement of the bias from −0.0259 to 0.0154. These
results suggest a great agreement between the SampEn50 and SampEn1028 values. For
future research, a measurement over 60 s with a 10 s warm-up should be considered,
although measurements over 20 s are already satisfactory in daily practice.

Figure 7. Bland and Altman plots illustrating the differences between SampEn 50 and SampEn 10I
for GyrX in the b and r stool test.

5. Conclusions and Outlook

A b and r stool test performed over a period ranging from 20 to 60 s with a warm-up
time of 10 s with a single inertial sensor placed in the low back seems to be relevant for the
evaluation of low back kinematics complexity through a SampEn computation. The next
step towards the development of the test will be the analysis of the inter- and intra-examiner
reliability of the sample entropies obtained in the b and r stool test.

Then, we will have to prove the clinical validity of these values in the evaluation of
low back pain by verifying that a low-back-pain population indeed has a significantly
different sample entropy than a healthy or recovered population. The more stereotyped



Entropy 2022, 24, 437 12 of 14

response of the lumbar-pelvic region observed in patients with low back pain compared to
healthy participants points towards such a result [40].

Finally, automation of SampEn calculations should be introduced into the data acqui-
sition software to allow for clinical use. Such a work is in progress.
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Appendix A. More about SampEn

We present in Figure A1 a schematic presentation of the SampEn estimation method
on a sample angular velocity time series freely inspired from [43]. One starts by considering
a template vector of length m beginning at instant i. Then, one counts the number of pairs,
Am, of vectors of length m that are “close enough” to the template vector. The criterion is
defined through a given norm (Euclidean distance in our case), and the distance d below
which two vectors are regarded as close enough is conventionally expressed in the fraction
of the times series standard deviation SD, i.e., d < r SD with r < 1. The same calculation may
be performed by extending the template vector to a length m + 1, leading to Bm. Sample
entropy is then defined as [43] SampEn = − ln Am

Bm
. Note that the search for pairs of vectors

is performed within a window of N points, which is another parameter of the calculation.

Figure A1. Schematic representation of SampEn calculation from a typical GyrX time series, adapted
from [43]. The value m = 2 is chosen.

https://www.a-e-c.eu/
https://osf.io/t4dgr/
https://nomadeproject.eu/
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