

AdriaClim

Climate change information, monitoring and management tools for adaptation strategies in Adriatic coastal areas

Activity 3.4

Integration and assessment of information of monitoring (obs/models) components for each Pilot

D.3.4.1

Report on Integration and assessment of monitoring (observations and models) components information for each Pilot

Deliverable:	D3.4.1 [Report on Integration and assessment of monitoring (observations and models) components information for each Pilot]
Due month	M26 [February 2022]
Delivery Date	28/02/2022
Document status	V0.1
Authors	CNR-ISMAR: Christian Ferrarin, Maria Letizia Vitelletti, Fabio Raicich
Reviewers	

Table of contents

Introduction	4
Available datasets for each Pilot area	5
PS1 Grado and Marano Lagoon and Gulf of Trieste	5
PS2 Venice lagoon / City of Venice / Veneto coastal area	6
PS3 Emilia-Romagna area	7
PS4 Apulia region	9
PS5 Dubrovnik Neretva area	9
PS6 Split – Dalmatia area	10
PS7 Northern-Eastern Adriatic Sea	11
PS8 Marche area	11
PS9 Molise area	12
Assessing climate variability for each Pilot areas	13
PS1 Grado and Marano Lagoon and Gulf of Trieste	15
PS2 Venice lagoon / City of Venice / Veneto coastal area	16
PS3 Emilia-Romagna area	17
PS3 Emilia-Romagna area	17
PS4 Apulia region	17
PS5 Dubrovnik Neretva area	17
PS6 Split – Dalmatia area	17
PS7 Northern-Eastern Adriatic Sea	18
PS8 Marche area	18
PS9 Molise area	18
References	18

1. Introduction

The main aim of this deliverable is to provide the list of quality checked information (observations and model output) available for each of the project's Pilot areas (Fig. 1). Moreover, this deliverable aims at providing an overview of the climate variability in the past/present time and in the future scenarios through the computation of specific climate indicators (e.g., trends).

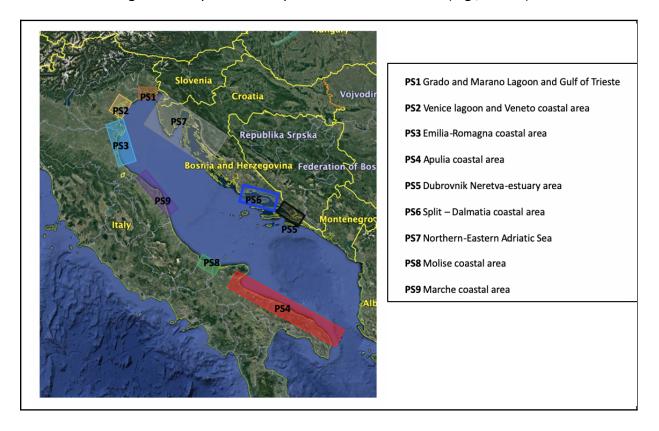


Fig. 1. The AdriaClim pilot areas in the Adriatic basin.

2. Available datasets for each Pilot area

The list of available information has been derived from deliverables 3.1.1. and 3.2.1 for the observations and the model outputs, respectively. The datasets should be subjected to the quality check protocols described in deliverable 3.3.1. and distributed through the AdriaClim information system (see deliverable 4.1.1.).

It is noteworthy that the Regional Earth system Model over the Adriatic Sea area implemented in the AdriaClim project will provide atmospheric, hydrologic and oceanographic information for all pilot areas.

2.1 PS1 Grado and Marano Lagoon and Gulf of Trieste

Involved partners: ARPA FVG, UNIBO, CNR-ISMAR.

Table 1: Available observations and model results at PS1.

Туре	Name	Description
Observation	ISPRA RMN Tide-gauge at Trieste	Variables: sea-level height, water temperature, air temperature, atmospheric pressure, wind speed, wind direction, relative humidity Sampling frequency: 10 min
Observation	ISPRA RMLV Tide-gauge at Grado	Variables: sea-level height Sampling frequency: 10 min
Observation	CNR tide-gauge station al Molo Sartorio	Variables: sea-level height, atmospheric pressure. Sampling frequency: 10 min/ hourly
Observation	CNR Meteorological station at Molo F. Bandiera	Variables: 10 m air temperature and wind, sea temperature at 0.4, 2 and 6 m. Sampling frequency: 10 min/ hourly
Observation	ARPA FVG coastal meteorological station at Trieste, Fossalon di Grado, Grado and Lignano Sabbiadoro	Variables: precipitation, wind speed and direction, temperature, relative humidity and global solar radiation. Sampling frequency: 10 min/ hourly
Observation	ARPA FVG open sea stations located in the Gulf of Trieste (16 stations)	Variables: temperature, salinity, dissolved oxygen, turbidity and chlorophyll-a, dissolved nitrogen forms, dissolved phosphorus, silicate, total nitrogen and total phosphorus. Sampling frequency: monthly
Observation	ARPA FVG transitional waters stations located in the Lagoon of Marano-Grado (16 stations)	Variables: temperature, salinity, dissolved oxygen, turbidity and chlorophyll-a, dissolved nitrogen forms, dissolved phosphorus, silicate, total nitrogen and total phosphorus.

		Sampling frequency: 10 min/ hourly
Model	SHYFEM application to the Gulf of Trieste and the Lagoon of Marano-Grado	Variables: sea level height, current velocity, water temperature and salinity. Output frequency: hourly. Numerical domain and resolution: the numerical computation is performed on a spatial domain that represents part of the northern Adriatic Sea and the lagoon of Marano-Grado by means of an unstructured grid. To adequately resolve the river-sea continuum, the unstructured grid also includes the lower part of the other major rivers flowing into the considered system. The numerical grid consists of 33,100 triangular elements with a resolution that varies from 4 km in the open-sea to a few hundred metres along the coast and tens of metres in the inner lagoon channels.

2.2 PS2 Venice lagoon / City of Venice / Veneto coastal area

Involved partners: Arpa Veneto, CNR-ISMAR, AUSSL3 Serenissima, ISPRA, City of Venice.

Table 2: Available observations and model results at PS2.

Туре	Name	Description
Observation	ISPRA RMLV tide-gauge and meteorological stations in the North Adriatic Sea and the Venice lagoon (26 monitoring stations)	Variables: sea level height and meteo-marine parameters Sampling frequency: 10 minutes
Observation	ARPAV Environmental quality network of Veneto coastal and marine waters (76 sampling stations)	Variables: multiparametric probe, nutrients, phytoplankton, chemical analysis of the water and sediment and biota matrix Sampling frequency: seven campaigns per year
Observation	ARPAV Marine Strategy network	Variables: analysis of the water, sediment and biota matrix Sampling frequency: six campaigns per year
Observation	ARPAV environmental quality network of the Venice lagoon (30 sampling stations)	Variables: ecological quality Sampling frequency: four campaigns per year
Observation	ISPRA RON wave buoy Venice	Variables: significant wave height, wave direction, wave mean period, wave peak period, wind speed, wind direction, water temperature, air temperature, atmospheric pressure, relative humidity Sampling frequency: 10 min/hourly

Observation	CNR-ISMAR Acqua Alta oceanographic platform	Variables: wind speed and direction, air temperature, humidity, solar radiation, precipitation, sea temperature, sea level, ADCP currents, waves Sampling frequency: 10 min/ hourly
Observation	ARPAV meteorological network	Variables: meteorological parameters Sampling frequency: 10 min/ hourly
Model	SHYFEM application to the Venice Lagoon and Veneto coast	Variables: sea level height, current velocity, water temperature and salinity. Output frequency: hourly. Numerical domain and resolution: the numerical computation is performed on a spatial domain that represents the entire Lagoon and its adjacent shore. The numerical grid consists of about 32,000 triangular elements with a resolution that varies from 2 km in the open-sea to a few hundred metres along the coast and tens of metres in the inner lagoon channels.

2.3 PS3 Emilia-Romagna area

Involved partners: ARPAE, RER, UNIBO, CNR-ISMAR, CMCC, ISPRA.

Table 3: Available observations and model results at PS3.

Туре	Name	Description
Observation	ISPRA RMN Tide-gauge at Ravenna	Variables: sea-level height, water temperature, air temperature, atmospheric pressure, wind speed, wind direction, relative humidity Sampling frequency: 10 min
Observation	ARPAE real time coastal and marine network (four stations in the Goro and Sacca di Goro Area and other four located in the Valli di Comacchio)	Variables: Dissolved oxygen, pH, salinity and temperature Sampling frequency: hourly
Observation	ARPAE monitoring in the Sacca di Goro (20 stations)	Variables: Dissolved oxygen, pH, salinity and temperature Sampling frequency: undefined, only from June to September
Observation	ARPAE Integrated station of Porto Garibaldi	Variables: sea level, water quality, air temperature and humidity, wind direction and velocity, atmospheric pressure, pluviosity, vertical land movement parameters Sampling frequency: hourly

Observation	ARPAE Nausicaa buoy	Variables: sea temperature, significant wave height, wave direction, wave mean period, wave peak period Sampling frequency: hourly
Observation	ARPAE idro-meteo monitoring network	Variables: Rain gauges (233), hydrometric levels (182), temperature (176), relative humidity (67), wind (36), solar radiation (27), snow depth (18), radars (2), and an automatic radio sounder (1) Sampling frequency: hourly
Observation	ARPAE Daphne Oceanographic Structure (35 sampling stations located along eight transects perpendicular to the coast)	Variables: sea temperature, salinity, dissolved oxygen, pH, chlorophyll-a, nutrients (nitrate, phosphate and silicate) and phytoplankton communities. Sampling frequency: two times a month (weekly from June to September)
Observation	ARPAE Environmental and sanitary monitoring network of shellfish production areas of Emilia Romagna (61 sampling stations)	Variables: salinity, oxygen, pH, water and air temperature, toxic phytoplankton, heavy metals, PAHs, PCBs, dioxins, faecal bacteria (e.g. Escherichia coli; Salmonella spp.), viruses, biotoxins Sampling frequency: weekly/monthly/yearly
Observation	ARPAE Daphne Oceanographic Structure for shellfish life and productions (most of the 35 sampling stations for the classification of the trophic status of coastal marine waters)	Variables: pH, T°, oxygen, salinity, suspended solids, colour, metals, hydrocarbons, organ halogenated substances, faecal coliforms and saxitoxin and other substances which can influence the flavour of shellfish Sampling frequency: unknown
Model	SHYFEM-BFM application to the Emilia Romagna coast	Variables: sea level height, current velocity, water temperature, salinity, biogeochemistry. Output frequency: hourly. Numerical domain and resolution: the numerical computation is performed on a spatial domain that represents the Emilia-Romagna coast and its adjacent shore. The numerical grid consists of 15,392 triangular elements with a resolution that increases towards the coast.

2.4 PS4 Apulia region

Involved partners: Apulia region, CMCC.

Table 4: Available observations and model results at PS4.

Туре	Name	Description	
Observation	ISPRA RMN Tide-gauge at Bari	Variables: sea-level height, water temperature, o	air

	and Otranto	temperature, atmospheric pressure, wind speed, wind direction, relative humidity Sampling frequency: 10 min
Observation	ISPRA RON wave buoy at Monopoli	Variables: significant wave height, wave direction, wave mean period, wave peak period, wind speed, wind direction, water temperature, air temperature, atmospheric pressure, relative humidity Sampling frequency: 10 min/ hourly
Observation	CMCC buoy at Torre Guaceto Marine Protected Area	Variables: unknown Sampling frequency: unknown
Model	SHYFEM application to the Apulia coast	Variables: sea level height, current velocity, water temperature and salinity. Output frequency: hourly/daily. Numerical domain and resolution: the numerical computation is performed on a spatial domain that represents the southern Adriatic Sea surrounding the Apulia coastline

2.5 PS5 Dubrovnik Neretva area

Involved partners: DUNEA, IOF, CMCC, CNR-ISMAR.

Table 5: Available observations and model results at PS5.

Туре	Name	Description
Observation	Slano bay monitoring network	Variables: salinity, temperature and bacterial (Escherichia
	(3 stations)	coli, Enterococcus)
		Sampling frequency: unknown
Observation	Permanent national	Variables: unknown
	oceanographic monitoring	Sampling frequency: unknown
Observation	Regular Neretva estuary	Variables: sea temperature, Salinity, Transparency,
	monitoring by a research vessel	Oxygen, Copper, Zinc, Phytoplankton pigments,
	BIOS DVA	Phytoplankton species, Nutrient salts, pH, DOC (Dissolved
		organic carbon), Priority substances in water, biota and
		sediment, Microalgae, Microzooplankton,
		Mesozooplankton, Marine seagrass, Benthic
		invertebrates
		Sampling frequency: unknown
Model	ROMS-Ichthyop application to	Variables: sea level height, current velocity, water
	the Dubrovnik Neretva area	temperature, salinity and dispersion of passive particles.
		Output frequency: hourly.
		Numerical domain and resolution: the model domain

covers the Neretva estuary and adjacent coastal sea with
horizontal resolution of 200 m.

2.6 PS6 Split – Dalmatia area

Involved partners: RERA, IOF, RB, CMCC, CNR-ISMAR

Table 6: Available observations and model results at PS6.

Туре	Name	Description			
Observation	IOF T/S long-term monitoring at Split-Vis transect and at Stončica station	Variables: water temperature and salinity Sampling frequency: monthly			
Observation	IOF plankton monitoring at Stončica and Kaštela Bay stations	Variables: water temperature, salinity, chlorophyll-a concentration, picoplankton, phytoplankton and zooplankton community Sampling frequency: monthly or seasonally			
Observation	Sediment monitoring in Split-Dalmatia	Variables: grain size composition, the content of organic matter (loss of ignition) and carbonates were determined at all stations, while the content of N and P in surface subsamples 2 cm thick and the content of org C Sampling frequency: monthly or seasonally			
Observation	Tide gauge at Jurana	Variables: sea level height Sampling frequency: hourly			
Model	ROMS-Ichthyop application to the Split-Dalmatia area	Variables: sea level height, current velocity, water temperature, salinity and dispersion of passive particles. Output frequency: hourly. Numerical domain and resolution: the model domain covers the middle Adriatic coastal area with a horizontal resolution of 165 m in the E-W direction and 231.5 m in the N-S direction.			

2.7 PS7 Northern-Eastern Adriatic Sea

Involved partners: IRB

Table 7: Available observations and model results at PS7.

Туре	Name	Description
Observation	IRB Center for Marine Research	Variables: unknown
	(CMR) oceanographic buoys	Sampling frequency: unknown

2.8 PS8 Marche area

Involved partners: Regione Marche.

Table 8: Available observations and model results at PS8.

Туре	Name	Description			
Observation	SPCSL meteorological network	Variables: precipitation, temperature, humidity, wind, air pressure, hydrometric level of watercourse Sampling frequency: hourly			
Observation	ASSAM meteorological network	Variables: precipitation, temperature, humidity, wind, air pressure Sampling frequency: hourly			
Observation	ISPRA RMN Tide-gauge at Ancona and San Benedetto del Tronto	Variables: sea-level height, water temperature, air temperature, atmospheric pressure, wind speed, wind direction, relative humidity Sampling frequency: 10 min			
Observation	CNR-IRBIM Meda Senigallia	Variables: air temperature, humidity, wind, air pressure, sea level height, current speed and direction, significant wave height, mean wave period, mean wave direction, chlorophyll a, turbidity, sea temperature, salinity, dissolved oxygen, Sampling frequency: hourly			
Observation	ARPAM Algal surveillance monitoring (35 stations)	Variables: sea temperature, salinity, pH, dissolved oxygen, concentration of chlorophyll-a, reactive silica and transparency, phytoplankton component (composition, density, reporting of blooms of potentially toxic species), nutrients (soluble inorganic nitrogen and total phosphorus) Sampling frequency: monthly			
Observation	ARPAM Monitoring of coastal marine water bodies (12 transects, each consisting of 2 stations)	Variables: sea temperature, salinity, pH, dissolved oxygen, chlorophyll a, reactive silica and transparency, phytoplankton component (composition, density, reporting of blooms of potentially toxic species), nutrients (soluble inorganic nitrogen and total phosphorus), macrobenthonic component Sampling frequency: monthly			

2.9 PS9 Molise area

Involved partners: Regione Molise.

Table 9: Available observations and model results at PS9.

Туре	Name	Description
Observation	Civil protection hydro-meteorological monitoring network	Variables: equivalent precipitation, hydrometric level, air temperature, relative humidity of the air, wind speed and wind direction, solar radiation, the height of the snow cover, normalised pressure at sea level. Sampling frequency: 10 min

3. Assessing climate variability for each Pilot areas

The objective of the second part of this study is to identify useful statistical indicators from measured and modelled datasets for assessing the climate variability in the investigated pilot area. The climate variability trends have been computed applying time-series analysis methodologies to selected monitoring variables, here grouped in three main categories: 1) physical and chemical marine variables (sea temperature, salinity, sea level, wind-wave energy and height, oxygen, nutrients), 2) atmospheric and hydrological variables (air temperature, wind speed, mean sea level pressure, precipitation, river discharge), 3) biotic variables (chlorophyll-a and phytoplankton) (Chust et al., 2022).

Traditionally, time series methods decompose the temporal data into the following components: cyclical fluctuation, trend, and random error (Mudelsee, 2019). For the present study, we suggest using the non-parametric Mann–Kendall test to assess the significance of trends in the climate data on monthly, seasonal, and annual scales. The null hypothesis in the test is that there is no significant trend within the time series and when this hypothesis is rejected it indicates a trend, which can be either positive or negative as described by its score.

The analysis will be performed for investigating:

- changes in the mean values of the variable;
- changes in extreme events; here an appropriate metric needs to be defined (e.g., intensity, duration or frequency of the event) before the trend analysis.
- changes in seasonality, which in classical decomposition methods is assumed to be constant over the years.

Data have been firstly decomposed to remove seasonal effects using LOESS (Cleveland et al., 1990). For the purpose of the AdriaClim project, we decided to limit the trend analysis to the 30-year periods considered in the model simulations: 1991-2020 and 2021-2050 for the historical and climate change scenarios, respectively. In table 10, we listed the trend analyses to be applied to the measured timeseries and to model output timeseries extracted at site-specific monitoring station locations. Some of the computed trends overlap with the indicators for changes in the climate systems proposed within Activity 3.5. The trends will be computed with the software developed in Activity 4.2.

Table 10: List of variables and analyses to be performed on the timeseries.

Category	Variable	Units	Analysis description
Physical and chemical marine	Sea temperature	°C	Trend in daily/monthly/yearly mean values; Trend in monthly/yearly extreme values (90 th percentile)
Physical and chemical marine	Salinity		Trend in daily/monthly/yearly mean values
Physical and chemical marine	Sea level	m	Trend in daily/monthly/yearly mean values; Trend in monthly/yearly extreme values (90 th percentile); Trend in number of peaks over site-specific threshold per year
Physical and chemical marine	Significant wave height	m	Trend in daily/monthly/yearly mean values; Trend in monthly/yearly extreme values (90 th percentile)
Physical and chemical marine	Dissolved oxygen	mg l ⁻¹	Trend in monthly/yearly mean values
Physical and chemical marine	Nutrients (NH4, PO4, NO2, NO3, SiO4)	mg l ⁻¹	Trend in monthly/yearly mean values
Atmospheric and hydrological	Air temperature	°C	Trend in daily/monthly/yearly mean values; Trend in monthly/yearly extreme values (10 th and 90 th percentiles); Trend in number of days with T over/below threshold (25°C for warm and 0°C for cold days) per year
Atmospheric and hydrological	Wind speed	m s ⁻¹	Trend in daily/monthly/yearly mean values; Trend in monthly/yearly extreme values (90 th percentile)
Atmospheric and hydrological	Mean sea level pressure	mbar	Trend in daily/monthly/yearly mean values; Trend in monthly/yearly extreme values (90 th percentile)
Atmospheric and hydrological	Precipitation	mm day ⁻¹	Trend in annual accumulated values; Trend in yearly extreme values (90 th percentile); Trend in number of days with P over threshold (10 mm/day); Trend in number of days without precipitation
Atmospheric and hydrological	River flow	m³ s ⁻¹	Trend in monthly/yearly mean values; Trend in monthly/yearly extreme values (90 th percentile)
Biotic	Chlorophyll a	mg l ⁻¹	Trend in monthly/yearly mean values
Biotic	Phytoplankton	mg m ⁻³	Trend in monthly/yearly mean values

3.1 PS1 Grado and Marano Lagoon and Gulf of Trieste

. . .

Table 11: Trends computed for PS1 from observations (Obs 1991-2020), reanalysis scenario (REA 1991-2020), historical climate scenario (Hist 1991-2020) and climate change RCP85 scenario (RCP8.5 2021-2050).

	Variable	Trend (units/year)						
Station		Description	Obs 1991-2020	REA 1991-2019	Hist 1991-2020	RCP8.5 2021-2050		
	Sea surface temperature (°C)	Trend in monthly mean values	0.037 ± 0.000	0.041 ± 0.000				
		Trend in monthly extreme (p95) values	0.033 ± 0.000	0.048 ± 0.000				
	Surface salinity	Trend in monthly mean values	-	0.016 ± 0.000				
Trieste	Sea surface height (mm)	Trend in monthly mean values	3.38 ± 0.03	3.55 ± 0.03				
		Trend in monthly extreme (p95) values	3.59 ± 0.05	3.47 ± 0.05				
		Trend in number of peaks over threshold (XX m) per year						

3.2 PS2 Venice lagoon / City of Venice / Veneto coastal area

. . .

Table 12: Trends computed for PS2 from observations (Obs 1991-2020), reanalysis scenario (REA 1991-2020), historical climate scenario (Hist 1991-2020) and climate change RCP85 scenario (RCP8.5 2021-2050).

	Variable	Trend (units/year)						
Station		Description	Obs 1991-2020	REA 1991-2020	Hist 1991-2020	RCP8.5 2021-2050		
AAOT	Sea surface temperature (°C)	Trend in monthly mean values	-	0.040 ± 0.000				
		Trend in monthly extreme (p95) values	-	0.044 ± 0.000				
	Surface salinity	Trend in monthly mean values	-	no				
	Sea level height (mm)	Trend in monthly mean values	5.14 ± 0.04	3.69 ± 0.03				
		Trend in monthly extreme (p95) values	5.38 ± 0.04	3.90 ± 0.04				
		Trend in number of peaks over threshold (XX m) per year						
Venice Punta della Salute	Sea surface height (mm)	Trend in monthly mean values	4.94 ± 0.03					
		Trend in monthly extreme (p95) values	4.43 ± 0.04					
		Trend in number of peaks over threshold (XX m) per year						

3.3	PS3 Emilia-Romagna area
3.4	PS3 Emilia-Romagna area
3.5	PS4 Apulia region
3.6	PS5 Dubrovnik Neretva area
3.7	PS6 Split – Dalmatia area

3.8 PS7 Northern-Eastern Adriatic Sea

. . .

3.9 PS8 Marche area

. . .

3.10 PS9 Molise area

. . .

4. References

Cleveland, R. B., Cleveland, W. S., McRae, J.E., and Terpenning, I., 1990. STL: A Seasonal-Trend Decomposition Procedure Based on LOESS. Journal of Official Statistics, 6, 3-73.

Chust, G., González, M., Fontán, A., Revilla, M., Alvarez, P., Santos, M., et al., 2022.. Climate regime shifts and biodiversity redistribution in the Bay of Biscay. Sci. Total Environ. 803. doi: 10.1016/j.scitotenv.2021.149622.

Mudelsee, M., 2019. Trend analysis of climate time series: A review of methods. Earth Sci. Rev., 190, 310-322, doi: 10.1016/j.earscirev.2018.12.005.