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Abstract

We introduce a dynamic Deep Learning (DL) architecture based on the Finite Element Method (FEM) to solve linear
arametric Partial Differential Equations (PDEs). The connections between neurons in the architecture mimic the Finite Element
onnectivity graph when applying mesh refinements. We select and discuss several losses employing preconditioners and
ifferent norms to enhance convergence. For simplicity, we implement the resulting Deep-FEM in one spatial domain (1D),
lthough its extension to 2D and 3D problems is straightforward. Extensive numerical experiments show in general good
pproximations for both symmetric positive definite (SPD) and indefinite problems in parametric and non-parametric problems.
owever, in some cases, lack of convexity prevents us from obtaining high-accuracy solutions.
2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Inverse problems are of great importance to our society [1,2]. They appear, for example, in imaging [3],
lectromagnetics [4], non-destructive evaluations [5], and geophysics [6]. There exist different methods to solve
hem, including gradient-based and statistical-based methods [7,8]. These traditional methods evaluate the inverse
olution pointwise (i.e., for a given set of measurements), but they rarely provide a global representation of the
nverse operator. To overcome this problem and approximate the full inverse function, it is possible to use Deep
earning (DL) methods (see, e.g., [9–14]), which allow to approximate complex mappings via a composition of

inear and non-linear functions.
Training of inverse problems is typically performed in GPUs, especially when using large databases and/or

omplex Neural Network (NN) architectures. In these cases, it is critical to either have a large labeled database
or training or a parametric PDE solver efficiently implemented in a GPU. It is desirable for this parametric PDE
olver to return the solution in a fraction of a second to rapidly iterate over distinct parameter candidates during
raining. In particular, a pretrained NN is suitable to act as a real-time parametric PDE solver.
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Fig. 1. FEM refinements vs. Deep-FEM layers.

Multiple approaches exist to solve PDEs using DL. For example, [15] proposes a VarNet model based on the
variational formulation of PDEs; [16] proposes a Deep Galerkin Method; [17] describes the Deep Ritz Method,
which minimizes the energy function using the Ritz method; and [18] proposes a Deep Least-Squares method. There
also exist Physics-Informed Neural Networks (PINNs) —originally proposed in [19]— and its multiple variants
and applications (see, e.g., [20–24]). There also exist NN approaches for improving the performance of traditional
PDE solvers (see, e.g., [25,26]). Regarding parametric PDEs, we encounter several recent works. To mention a
few: [27] uses NNs to parameterize the physical quantity of interest as a function of input coefficients; [28] analyzes
theoretically the approximability of parametric maps by NNs for parametric PDEs; [29] combines NNs with model
reduction; and [30] proposes a multi-level graph NN framework.

All of the above works address the idea of finding a continuous function (the NN) that approximates the solution
of a (parametric) PDE. Generally, these designs allow evaluating the NN at any point in the domain, i.e., they have
a mesh-free structure. However, they also present some limitations. We highlight the following two: (a) the resulting
DL architectures lack from the so-called explainability [31,32], and (b) numerical integration rules are challenging
to design within the loss, as mentioned in [20] and further explained in [33].

Herein, we propose a DL method for solving parametric PDEs that resembles the Finite Element Method
(FEM) [34]. The NN architecture aims to act as a solver of the parametric system of linear equations arising in
the FEM and to mimic the Finite Element connectivity graph when applying mesh refinements: we associate each
NN layer with a mesh refinement. Each NN layer has a ResNet [35] design and extends coarse solutions to finer
meshes. Fig. 1 illustrates the relation between FEM refinements and NN layers. In this way, the architecture provides
certain degree of explainability, being the output the vector of nodal values corresponding to the finest mesh. In
addition, this discrete approach enables exact numerical integration during training because the NN prediction lies
on a piecewise-polynomial space.

The developed Deep-FEM first sets an initial architecture that produces coarse solutions after training. Then, we
iteratively and dynamically insert layers to the architecture, maintaining the previously trained variables and adding
new ones. Subsequently, we retrain the variables of the new model and we repeat this process until we achieve a
desired degree of accuracy in the solution. The proposed NN allows to: (a) select a priori the number of neurons
in the final layer based on experience and existing analytical results, and (b) perform a mesh-convergence study.

Our implementation restricts to 1D problems with piecewise-linear approximations and uniform refinements.
The extension to higher dimensional problems, higher order polynomial approximations, and/or adaptive meshes is
straightforward; but it requires a more elaborated implementation to deal with geometric criteria and node numbering
between refinements, which we do not delve into in this work. We show numerical results of model problems with
constant and piecewise-constant parameters.

The main contribution of the presented technology lies in the NN’s ability to solve parametric problems. For
illustration, we first introduce it for the non-parametric case before considering the parametric problem. We do
the same when describing the numerical results, since the comprehensibility and limitations of the method for the
non-parametric setting are extrapolable to the parametric one.

The remainder of this work is as follows. Section 2 introduces our problem of interest and the corresponding

variational formulation. Section 3 describes our selected Deep-FEM solver architecture and Section 4 defines the loss
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when employing several preconditioners. Section 5 shows implementation details and the limitations we encountered
when using the widely known NN library Tensorflow (TF) [36]. Section 6 discusses the obtained numerical results
and Section 7 summarizes and concludes the work.

2. Model problem

In this manuscript, we focus on a particular parametric Boundary Value Problem (BVP), although the presented
approach applies to other problems that can be solved using the FEM.

2.1. Parametric linear PDE model problem

Let Ω be a domain. We consider the following parametric linear BVP,⎧⎪⎨⎪⎩
−∇ · σ∇u + αu = f, in Ω ,

u = u D, in ΓD,

− σ ∂u
∂n = g, in ΓN ,

(1)

where parameters σ > 0 and α ∈ R are piecewise-constant functions, f is the source, and uD and g are the
Dirichlet and Neumann data, respectively. ΓD and ΓN are the Dirichlet and Neumann boundaries, respectively, and
with ΓN possibly being empty. n denotes the outer normal vector at each point of ΓN and ∂u/∂n = ∇u · n. This
model problem covers Poisson’s equation (α = 0), Helmholtz’s equation (α < 0; σ = 1), and Reaction–Diffusion’s
equation (α > 0; σ = 1).

2.2. Finite Element formulation

A variational formulation of the above BVP reads as follows: Find u = u0 + uD with u0 ∈ H 1
0 (Ω ) such that

(σ∇u,∇v)Ω + (αu, v)Ω = ( f, v)Ω − (g, v)ΓN , ∀v ∈ H 1
0 (Ω ),

(2)

where

(u, v)Ω :=
∫
Ω

u · v. (3)

Using a FEM, we look for a solution u =
∑

j u jφ j , where u j are the unknown coefficients and φ j are
piecewise-linear basis functions. Discretizing (2), we arrive at the system of linear equations

Au = f, (4)

where u is the vector of unknown coefficients, A is the corresponding matrix, and f is the load vector.

3. Deep-FEM architecture

We first describe our proposed architecture for the non-parametric problem (i.e., a one-sample parameter problem)
and then we extend it to the parametric case. Finally, we consider both constant and piecewise-constant parameters
alternatives.

Fig. 2 shows our selected node numbering when performing uniform mesh refinements. Accordingly, the
extension operator E is given by a sparse matrix filled with ones and halves depending on the contribution with
which each node propagates from the coarse to the fine mesh. Note that similar extension operators exist for 2D
and 3D problems as well as for higher-order elements, and for H (div), H (curl), and L2 discretizations [37].

3.1. Non-parametric Deep-FEM architecture for constant PDE coefficients

Let σ and α be real-valued constants. For a one-element mesh, we propose the following two-layer depth
architecture:

2 1
u1 = (L1 ◦L1)(σ, α), (5)
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Fig. 2. 1D uniform mesh refinements and node numbering.

Fig. 3. Non-parametric Deep-FEM dynamic architecture.

L1
1 = ϕ(ωσ

1 σ + bσ
1 )+ ϕ(ωα

1 α + bα
1 ), (6)

L2
1 =W2

1L1
1 + b2

1, (7)

here ϕ is an activation function, and u1 is a vector of dimension two. The set of learnable variables consists of

1 = {ω
σ
1 , ωα

1 , bσ
1 , bα

1 , W2
1, b2

1}.
We train our first NN N 1 := L2

1 ◦L1
1 so u1 approximates the FEM solution in the one-element mesh. Then, we

efine and obtain a two-element mesh. We add an input-dependent ResNet [35] to N 1 to define N 2:

u2 =N 2(σ, α) = E1u1 + r2, (8)

r2 = (L2
2 ◦L1

2)(σ, α) =W2
2

{
ϕ(ωσ

2 σ + bσ
2 )+ ϕ(ωα

2 α + bα
2 )

}
+ b2

2, (9)

ith r2 and u2 being vectors of dimension three, and E1 denoting the extension matrix of u1 on the fine (two-
lement) mesh. The learnable set of variables θ2 is now {ωσ

2 , ωα
2 , bσ

2 , bα
2 , W2

2, b2
2} or θ1 ∪ {ω

σ
2 , ωα

2 , bσ
2 , bα

2 , W2
2, b2

2}

epending on if we perform a layer-by-layer or an end-to-end training, respectively. We initialize the new variables
f N 2 so that the residual term r2 is zero at the beginning of the retraining (e.g., initializing W2

2, b2
2 = 0), and

e maintain the learned values in θ1 in the previous step at the beginning of the retraining in the current step. We
etrain N 2 so u2 approximates the FEM solution on the (two-element) fine mesh.

We repeat this process iteratively, increasing the depth of our NN, until the number of elements is sufficient to

ccurately approximate the analytic solution. Fig. 3 shows a graph of this dynamic architecture.
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Fig. 4. Trainable block architecture with three-neuron width and two-layer depth.

Fig. 5. Parametric Deep-FEM dynamic architecture.

.2. Parametric Deep-FEM architecture for constant PDE coefficients

For the parametric problem, we add depth and width to the trainable parts of the dynamic architecture, namely,

u1 =N 1(σ, α) = FC1(σ, α), (10)

ui =N i (σ, α) = Ei−1ui−1 + ri , i ≥ 2, (11)

ri = FCi (σ, α), i ≥ 2. (12)

Ci is a Fully Connected NN with non-activated last layer and depth di ≥ 2,

FCi = (Ldi
i ◦ · · · ◦L

2
i ◦L1

i )(σ, α) (13)

L1
i = ϕ(Wσ

i σ + bσ
i )+ ϕ(Wα

i α + bα
i ), (14)

L j
i = ϕ(W j

i L
j−1
i + b j

i ), 1 < j < di , (15)

Ldi
i =Wdi

i Ldi−1
i + bdi

i . (16)

We call trainable block to the FCi NN in both the non-parametric and parametric problems. Fig. 4 illustrates a
trainable block architecture and Fig. 5 depicts the appearance of the parametric architecture.

3.3. Parametric Deep-FEM architecture for piecewise-constant PDE coefficients

Finally, we add the piecewise-constant behavior to the parameters. We assume that the parameters take constant
values on each element of the initial mesh. Thus, the architecture is affected only in the input layer by replacing
the σ and α values by vectors of sizes equal to the number of elements of the initial mesh. Fig. 6 illustrates this

appearance of a dynamic and parametric graph for an initial two-element mesh with piecewise-constant parameters.
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Fig. 6. Parametric Deep-FEM dynamic architecture for piecewise-constant parameters.

3.4. Number of trainable variables

In the layer-by-layer training, we associate the final layer with the final Finite Element mesh. Then, the number
of trainable variables is linear with respect to the number of nodes in the finest mesh, up to a constant that depends
on the intrinsic prescribed architecture of the trainable block related to the final layer. In the end-to-end training, in
addition to the final mesh, we associate each of the previous layers of the NN architecture with coarser meshes: as we
move away from the final layer, each subsequent layer contains in its corresponding trainable block approximately
half as many trainable variables as in the previous layer. Adding up, the overall number of trainable variables is
still linear with respect to the number of nodes in the final mesh.

4. Loss function and step-by-step optimization

We propose a step-by-step training. At each step, we aim N i to approximate the solution to the parametric system
f linear equations arising in the FEM for an i th mesh-refinement level. Denoting by Ai and fi to the corresponding
atrix and load vector, we employ the loss

ℓi (σ, α; θi ) = ∥fi − Ai ui∥, (17)

here ui =N i (σ, α; θi ) is the NN prediction, fi −Ai ui is the residual, and ∥ · ∥ is a discrete vector norm (e.g., the
2-norm). Then, considering a data D of samples of parameters, for each i th step, we train N i via the mean loss
ndicator

θ∗i = arg min
θi

1
|D|

∑
(σ,α)∈D

ℓi (σ, α; θi ). (18)

4.1. Gradient-descent based training

At the beginning of each step, we apply the Adam optimizer [38]. If the number of iterations attains an established
maximum, we stop its execution. Alternatively, to control stagnation, we monitor and compare the loss obtained
at any given iteration with the lowest loss obtained few iterations before. If the loss improvement is insignificant
after a prescribed number of iterations, we stop the execution. Since the loss may increase or decrease during the
Adam performance, we monitor the loss so as to return the best trainable variables configuration at the end of
its execution. Thereafter, we apply a customized gradient-descent based optimizer with a loss-dependent adaptive
learning rate (GD loss-lr). We maintain the same stopping and stagnation criteria than in Adam. The GD loss-lr
optimizer readjusts the trainable variables to prevent a loss increase. Algorithm 1 shows the learning rate adaptivity
and trainable variables acceptance–rejection criteria. In the numerical results, we compare both optimizers: Adam
and GD loss-lr. While Adam rapidly decreases the loss but only reaches a suboptimal threshold in which it oscillates
and it does not further improve, GD loss-lr decreases the loss monotonically. However, sometimes this convergence

is slower than with Adam.
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C. Uriarte, D. Pardo and Á.J. Omella Computer Methods in Applied Mechanics and Engineering 391 (2022) 114562

w
e
t

I
f
t

Algorithm 1: Loss-dependent adaptive learning rate in gradient-descent based optimization

Input: θ0, η0 ; // Initial variables and learning rate

Output: θ∗, ℓ∗ ; // Final variables and optimal loss value

ℓ0
←

1
|D|

∑
(σ,α)∈D ℓ(σ, α; θ0); θ1

← θ0
− η0 ∂ℓ

∂θ
(θ0);

θ∗← θ0
; ℓ∗← ℓ0

; t ← 1;
while not STOP do

ℓt
←

1
|D|

∑
(σ,α)∈D ℓ(σ, α; θ t ); θ t+1

← θ t
− ηt ∂ℓ

∂θ
(θ t ) ;

if ℓt > ℓ∗ then
ηt+1
← Decrease(ηt ); θ t+1

← θ∗;
else

θ∗← θ t ;
if convergence is slow and no variables rejection in t − 1 then

ηt+1
← Increase(ηt );

else
ηt+1
← ηt ;

ℓ∗← ℓt ;

t ← t + 1;
return θ∗, ℓ∗

4.2. Norm selection: preconditioning

We want to select a loss with a similar behavior than the energy-norm error. In a SPD problem, the energy norm
is given by

∥v∥A :=
√

vT Av, (19)

here vT is the transpose of vector v, and A denotes the SPD matrix of the system of linear equations. Writing the
rror vector as ei = A−1

i fi − ui for each i th mesh-refinement level, we arrive at the following norm relation with
he residual:

∥ei∥Ai = ∥fi − Ai ui∥A−1
i

. (20)

n practice, the inverse of Ai is non-computable and thus the error is never known. Hence, as in iterative methods
or solving a system of linear equations, we select a preconditioner to mimic the inverse operator and thus decrease
he condition number of the system [39]. Thus, we define the loss as

ℓi (σ, α; θi ) := ∥fi − Ai ui∥Pi =

√
(fi − Ai ui )T Pi (fi − Ai ui ), (21)

where Pi is a preconditioner for Ai . We select for Pi block Jacobi preconditioners of different block sizes and with
one-element overlap [40]. If Pi is the identity matrix, the loss corresponds to the discrete l2-norm of the residual.

In case the problem is indefinite, we select a positive definite operator Bi and measure the error on the
corresponding norm. The relation between the error and the residual in this new norm is given by

∥ei∥Bi = ∥A
−1
i (fi − Ai ui )∥Bi , (22)

where following the above reasoning leads us to define the loss as

ℓi (σ, α; θi ) := ∥Pi (fi − Ai ui )∥Bi . (23)

Again, if Pi and Bi are the identity operators, the above equation reduces to the discrete l2-norm of the residual.
In the numerical results, in addition to using the energy-norm for positive definite problems, we employ the

continuous L2 and H 1 norms both for testing and for monitoring the (preconditioned) residual and the error. These
continuous norms have their equivalent discrete definitions:

∥u ∥ =

√
uT M u = ∥u ∥ , (24)
i L2 i i i i Mi

7
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∥ui∥H1 =

√
uT

i Mi ui + uT
i Ki ui = ∥ui∥Mi+Ki , (25)

here ui = [ui j ] is the vector of evaluations of ui =
∑

j ui jφi j at the nodal points of the mesh, φi j is the basis
unction centered at the j th node for the i th mesh-refinement level, and Mi and Ki are the mass and stiffness

matrices defined by (φis, φir )Ω and (∇φis,∇φir )Ω in the (r, s)-th entry, respectively. For convenience, we call the
discrete norms (24) and (25) by the names inherited from their continuous norms, namely, L2 and H 1 norms,
respectively.

5. Implementation

We implement the code in the Python programming language, and we use the libraries Tensorflow 2 (TF2) [36],
NumPy [41], and SciPy [42] to build the NN models and to generate and manage the parameters and FEM data. We
create the layers by redefining the corresponding base classes in Keras inside TF2 (tf.keras). We use a dedicated
parse library within TF2 (tf.sparse) to handle the extension operators and the FEM matrices to save memory
nd achieve high-performance. We use double precision (float64) instead of the default single precision (float32).
e calculate the loss in an auxiliary non-trainable layer that is applied after the main model N i at each step. Below,
e describe the three main difficulties encountered during our implementation.

.1. Reshape of the batch sparse tensors

Tensors flowing through Keras models are prepared to maintain their first dimension (a.k.a axis) for the batch
f samples. As a consequence, matrix–vector multiplications in the loss transform into an operation between a 3D
parse tensor (batch of sparse matrices) and a 2D tensor (batch of vectors) in the Keras model. If both tensors were
ense, we could define our operation via Einstein summation. However, there is still not an equivalent TF2 function
upporting sparse tensors [43]. We overcome this by reshaping the 3D sparse tensor as a sparse non-overlapping
lock 2D matrix, and the 2D tensor as a long 1D vector. This leads us to miss the batch flow behavior of the
odel and we are forced to avoid using the Keras training function. We thus perform a low-level optimization via

utomatic differentiation in eager execution, which is significantly slower than training via graph execution within
eras [44].

.2. FEM data generation

We utilize SciPy as the FEM environment to build the extension operators and the matrices and preconditioners of
he system of linear equations. We also utilize it to solve the sparse systems via its built-in solver to compare model
redictions. For more complicated geometries, there exist other more efficient pieces of software to assemble the
atrices, preconditioners, and extension operators (e.g., FEniCS [45]). We recommend their use for more complex
E systems (e.g., in 2D and 3D problems). In any case, these offline operations are calculated prior to the training
f the NNs, and therefore they do not affect to the optimization time of the model.

.3. Preconditioners assembly and action

Ideally, we should manage preconditioners as LU block decompositions of the matrices of the system, and
alculate their actions at each loss evaluation using a forward–backward substitution algorithm [46,47]. Again,
F2 lacks an equivalent built-in function to evaluate these actions. For this reason, we manage the preconditioners
s already assembled tensors.

. Numerical results

To analyze the Deep-FEM performance, we carry out a series of experiments. Sections 6.1, 6.2, and 6.3
ontemplate non-parametric problems, while Section 6.4 addresses parametric problems. All experiments are carried
ut in the spatial domain (0, 1) with Dirichlet and Neumann boundary conditions at 0 and 1, respectively.
8
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6.1. A single PDE example

Let{
−u′′ = −20x3,

u(0) = 0, u′(1) = 5.
(26)

Its analytic solution is u(x) = x5. We solve it employing the Deep-FEM starting from a one-element mesh. We
perform ten mesh refinements (eleven steps) to finish with a 1024-element overkill mesh. In this first experiment,
we analyze our proposed method when performing multiple refinements. All the training blocks of the DL model
consist of one-neuron width and one-layer depth (see Section 3.2). We employ ReLU activation functions on all
trainable blocks.

Fig. 7 illustrates the NN predictions in the first four steps. At each step, the model extends the coarse prediction
to the fine mesh, and then trains the resulting NN to obtain a proper fine grid approximation. Results show a superb
accuracy in these first steps.

Fig. 8(a) shows the loss evolution along the first four steps when the loss coincides with the energy-norm error.
Fig. 8(b) shows all eleven steps of the training process. This example illustrates the convergence behavior and
limitations of DL under optimal conditions, i.e., when the inverse of the matrix is already part of the loss. The
vertical jumps observed in the loss correspond to the extension from one grid to the next one. After each jump, we
observe a noisy convergence of the loss. This phase corresponds to the use of the Adam optimizer, which works
as an initial aggressive loss descender that gets stunned quickly. We then switch to the GD loss-lr optimizer, which
exhibits a monotonic loss decrease. At each phase, we select an initial learning rate equal to the first loss evaluation
multiplied by 10−3 (for Adam) or by 10−2 (for GD loss-lr). We set a maximum of 2000 (Adam) and 4000 (GD
loss-lr) iterations for each optimizer performance at each step. Moreover, if we attain a loss below 10−12, we stop the
optimization at each step. We carry out an end-to-end training of the Deep-FEM model. We observe a convergence
deterioration as we increase the step number (and grid size). Nonetheless, the final error remains below 10−8 (see
Fig. 8(c)), which is a superb accuracy for DL algorithms.

6.1.1. End-to-end vs. layer-by-layer training
By construction, each layer of Deep-FEM produces the coefficients related to the basis functions associated to

each Finite Element mesh. The finer the mesh, the more local are the supports of the basis functions associated to
the coefficients. While an end-to-end training allows adjustments in the entire hierarchy of coefficients associated to
basis functions of coarse and fine meshes, a layer-by-layer training only adjusts coefficients associated to the finest
mesh. Fig. 9(a) shows the loss convergence under the same conditions as above but performing a layer-by-layer
training. We observe that convergence deteriorates as the number of iterations increases compared to performing an
end-to-end training (recall Fig. 8(b)). This occurs because the loss involves the gradient of the error when employing
the energy-norm. Fig. 9(b) shows the error function, which is almost constant. Thus, the derivative of the error is
almost zero and it is challenging to minimize the energy-norm error by adjusting individual coefficients associated
to local-support basis functions, since this often implies an increase in the derivative of the error. This convergence
accelerates using both global-support and local-support basis functions, as in multigrid methods [48].

If we select a norm for the loss that ignores gradients, e.g., the L2-norm, training of local-support basis functions
provide outstanding results, as shown in Fig. 10(a). However, optimizing with respect to the L2-norm is discouraged
for solving differential equations.

Even if the end-to-end training is the best alternative when dealing with losses involving the gradient of the
residual/error, we observe a convergence deterioration of the loss function as iterations move forward (recall
Fig. 8(b)). We suspect that this is independent of the norm selection, but it occurs because of the conflicting
coexistence of many trainable variables. To illustrate this fact, we consider the above L2-norm case where layer-
by-layer training suffices to achieve an outstanding convergence, and we perform an end-to-end training. Fig. 10(b)
shows the convergence deterioration of the loss function. In the following, we only consider end-to-end training
cases of study.
9
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Fig. 7. First four steps of Deep-FEM predictions for problem (26). uanalytic is the analytic solution, uFEM is the finite element solution, and
upred is the Deep-FEM prediction.

6.1.2. Preconditioners action
We now consider the loss given by Eq. (21) with three different preconditioners: (a) Pi being the identity matrix

(Fig. 11(a)); (b) Pi being a block Jacobi preconditioner with blocks of size two (Fig. 11(b)); and (c) Pi being a block
Jacobi preconditioner with size-adaptive blocks equal to half of the number of elements in the mesh (Fig. 11(c)).
In all the cases, we show the loss evolution along with the energy-norm error evolution.

We observe some differences between the energy-norm error and the loss that increases with the mesh size, as
expected. We also observe that the larger the size of the block-Jacobi, the smaller the discrepancy between the loss
10
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Fig. 8. End-to-end training of the Deep-FEM for problem (26). The loss is the energy-norm error.

and the norm error. In addition, the further the loss is from the energy-norm error, the earlier the loss stagnates
convergence —compare errors at Figs. 11(d) and 11(e). This suggests that the loss induced by the energy-norm
error is more convex with respect to the variables than other simplified variants such as the loss induced by the
2-norm of the residual vector.

6.1.3. Norm interchange during training
Depending on the norm we select, we deal with different convexity shapes of the loss with respect to the variables

of the NN. Within certain portion of the learnable variables domain, it often happens that a given loss is more
convex than others, which has a direct impact on the optimizer convergence. With the aim of avoiding stagnation,
we propose to change the norm during optimization, expecting to improve convexity. In this way, we define

ℓi (σ, α; θi ) = CE∥fi − Ai ui∥Pi + CL2∥Pi (fi − Ai ui )∥Mi , (27)

here CE , CL2 ∈ {0, 1} are distinct values that interchange if the convergence stagnates.
To illustrate the above idea, we consider the case of Fig. 11(b). We maintain the loss at Eq. (21) for the first

our steps. Then, we consider two variants for the loss in the fifth step when employing the GD loss-lr optimizer:
a) same loss as in the previous steps —maintaining CE = 1 in (27)— but with a maximum of 12,000 iterations;
nd (b) the loss at Eq. (27) with CE = 1 for 2000 iterations, changing to CL2 = 1 for another 8,000 iterations,
nd returning back to CE = 1 for 2000 additional iterations. Although the total number of iterations is the same in
ll situations, we obtain a loss at the end of the fifth step that is lower when performing the norm change (around
11
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w
c

Fig. 9. Layer-by-layer training of the Deep-FEM model for problem (26) employing the energy-norm for the loss.

Fig. 10. Training of the Deep-FEM model for problem (26) using the L2-norm for the loss.

10−10) than when maintaining the energy-norm (around 10−8) —see Fig. 12. The slope of the loss evolution is higher
hen employing the L2-norm, which allows us to start from a lower loss value when returning to the energy-norm
ompared to maintaining it during the entire training step.

12
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Fig. 11. End-to-end training of the Deep-FEM for problem (26) using different block-Jacobi sizes for the preconditioner.

Fig. 12. Energy-norm long training vs. energy- and L2-norm interchange training at step five of Fig. 11(b).
13
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6.2. Sine solution in the Poisson and Helmholtz equations

We consider two different BVPs whose solutions are u(x) = sin(10πx):{
−u′′ = 100π2 sin(10πx),
u(0) = 0, u′(1) = 10π,

{
−u′′ − 100π2u = 0,

u(0) = 0, u′(1) = 10π.
(28)

he former is a SPD problem, while the second is indefinite. We solve both employing the Deep-FEM selecting
he loss as the H 1-norm of the preconditioned residual,

ℓi (σ, α; θi ) = ∥Pi (fi − Ai ui )∥Mi+Ki . (29)

e start from 32 elements and perform three mesh refinements. We select Pi with blocks of size 32 for all 1 ≤ i ≤ 4.
he optimizers and NN architecture are those of Section 6.1.

Figs. 13 and 14 show the NN predictions of the Poisson and Helmholtz problems, respectively. In Poisson, FEM
odal solutions coincide with the analytical ones. This is not the case for Helmholtz equation.

When training with the preconditioner being the inverse matrix, the NN converges perfectly with a monotonic
ecrease. However, when considering non-inverse preconditioning, convergence stagnates after decreasing a couple
f orders of magnitude (see Figs. 15(a) and 15(b)). In the GD loss-lr optimizer training phases, the loss decreases
bruptly in the early iterations, but then remains flat. The H 1-norm error reduction is small. In both experiments, we
btain errors around 10−3 (see Figs. 15(c) and 15(d)). These results illustrate that it is possible to obtain approximate
olutions with certain degree of accuracy; however, lack of convexity of the loss prevents us from obtaining high-
ccuracy solutions. These observations agree with known facts of DL algorithms and prevent us from developing a
onvergence theory (see, e.g., [49–51]), where they assume that the DL optimizer converges, which unfortunately
s not always the case when dealing with non-convex losses.

.3. A sinusoidal problem with piecewise-constant parameters

Following the same sinusoidal example above, we consider an indefinite PDE with varying frequencies along
he propagation domain. For this purpose, we select piecewise-constant coefficients:{

−(σu′)′ + αu = 0,

u(0) = 0, u′(1) = 10π,
(30)

ith

σ =

⎧⎪⎨⎪⎩
1, if 0 < x < 1/3,

2, if 1/3 < x < 2/3,

3, if 2/3 < x < 1,

α =

⎧⎪⎨⎪⎩
−3000, if 0 < x < 1/3,

−2000, if 1/3 < x < 2/3,

−1000, if 2/3 < x < 1.

(31)

e solve it employing the H 1-norm for the loss. We start with 48 elements and perform three uniform refinements.
e select Pi with blocks of sizes 48 in the first two grids, and 96 in the last two grids. The optimizers and NN

rchitecture are those described in Section 6.1.
Fig. 16 shows the NN predictions and Fig. 17(a) shows the loss evolution during training. The NN nicely

onverges when employing the inverse as preconditioner, but in the subsequent steps we observe a stagnation of the
oss, as was previously the case. In addition, there is a decreasing influence of the loss on the H 1-norm error, which
emains constant throughout the last training step, while the loss decreases by two orders of magnitude. Figs. 17(b)
nd 17(c) show the errors at the end of steps three and four, respectively.

.4. Parametric boundary value problems

In this section, we naturally extend the Deep-FEM in its parametric variant: we train the NN so as to learn the
EM solutions from one mesh to another for a family of PDE coefficients with fixed boundary conditions. We

onsider experiments varying only the α coefficient with a constant parametric behavior.

14
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a

Fig. 13. Four steps of Deep-FEM predictions for Poisson’s problem (28). uanalytic is the analytic solution, uFEM is the finite element solution,
nd upred is the Deep-FEM prediction.

Let{
−u′′ + αu = 0,

u(0) = 0, u′(1) = 2π.
(32)

We solve it performing three uniform refinements. For the training, we select databases of randomly selected samples
of α coefficients. We train the NN on the entire database without batch partitioning. Our loss computes the norm
15
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Fig. 14. Four steps of Deep-FEM predictions for Helmholtz’s problem (28). uanalytic is the analytic solution, uFEM is the finite element
solution, and upred is the Deep-FEM prediction.

over the preconditioned residual that depend on each sample. Specifically, we optimize with respect to an averaged
sum of losses (norms) —see Eq. (18).

6.4.1. Reaction–Diffusion parametric equation: 0 < α < 200
In this example, the analytic solution is u(x) = C(e

√
αx
− e−

√
αx ) with C = 2πe

√
α

√
α(e2
√

α+1)
and u(x) → 2πx as
α → 0. We establish one-layer depth and 20-neuron width training block architecture for the NN at each step.

16
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N

Fig. 15. End-to-end training of the Deep-FEM for problem (28) along three steps with block Jacobi preconditioner with blocks of size 32.

We start the Deep-FEM by a uniform eight-element mesh and we finish with a 64-element mesh. At each step,
we employ preconditioners with blocks of size eight. Since the parametric problem is SPD, we consider the norm
induced by the preconditioner for the optimization.

We select a database of 100 samples randomly and logarithmically distributed to train the NN. To visualize the
N performance after training, we select the test data {0, 3, 15, 50, 200}, which does not take part in the training.

Fig. 18 shows the parametric mesh-by-mesh adaptivity of the NN over these test data. We observe a good behavior
of the NN for all values of α. Table 1 displays the losses and energy-norm errors evaluated on the test data points
at the end of the training.

Fig. 19 shows the error functions on the test data at the end of each training step. The largest errors occur for
the extreme values of α, namely, α = 0 and α = 200. Analyzing the evolution of the training loss in Fig. 20(a),
we observe that the loss decrease is larger than the energy-norm decrease, as expected. If we increase the size of
the blocks in the preconditioners step by step (e.g., with sizes 8, 8, 16 and 32 at steps one, two, three, and four,
respectively), the energy-norm error does decrease in consistency with the loss (see Fig. 20(b)). Table 2 displays the
losses and energy-norm errors evaluated on the test data at the end of this training with an enhanced preconditioner.
17
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p

6

d
f

Fig. 16. Four steps of Deep-FEM predictions for Helmholtz problem (30). uFEM is the finite element solution and upred is the Deep-FEM
rediction.

.4.2. Helmholtz parametric equation: −50 < α < −30
In this example, the analytic solution is u(x) = C sin(

√
αx) with C = 2π

√
α cos(

√
α) . We select 100 samples uniformly

istributed for the training data and we select {−50,−45,−40,−35,−30} as the test data. We consider the H 1-norm
or the loss and we maintain the same trainable blocks architecture as above. If we train the NN employing the
18
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Fig. 17. End-to-end training of the Deep-FEM for problem (30) along three steps with block-Jacobi preconditioner of sizes 48, 48, 96, and
96, respectively.

Table 1
Losses and energy-norm errors of the test samples at the end of the fourth step for the
reaction–diffusion problem (32) with 0 < α < 200 when employing eight-size blocks in the
preconditioners.

α 0 3 15 50 200

Loss 0.0015 0.013 0.0046 0.012 0.082
Energy-norm error 0.0160 0.014 0.0061 0.014 0.095

Table 2
Losses and energy-norm errors of the test samples at the end of the fourth step for the reaction–
diffusion problem (32) with 0 < α < 200 when employing size-increasing blocks in the
preconditioners.

α 0 3 15 50 200

Loss 0.0022 0.0059 0.0043 0.0086 0.011
Energy-norm error 0.0053 0.0075 0.0058 0.0101 0.013

same increasing block-size criterion for the preconditioners as above, we observe that in this occasion the loss does
not decrease the H 1-norm error (Fig. 21(a)). If we employ the inverses as the preconditioners, the NN converges
sufficiently (see Fig. 21(b)) to show adequate results. Fig. 22 shows the step-by-step predictions for the test data
when the training is performed according to Fig. 21(b).

Note that utilizing the inverses is equivalent to applying the loss:

ℓi (D; θi ) =
1
|D|

∑
∥uFEM,i (α)− ui (α)∥Mi+Ki , (33)
α∈D
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Fig. 18. Four steps of Deep-FEM predictions on test samples for parametric Reaction–Diffusion problem (32) with 0 < α < 200.
uFEM,α = uFEM,α(x) and upred,α = upred,α(x) are the FEM solution and Deep-FEM prediction evaluated at the α parameter coefficient,
respectively.

where uFEM,i (α) denotes the FEM solution vector for the α parameter. Precalculating all these vectors and
employing (33) as the loss during training could be significantly less expensive than computing/dealing with the
inverse matrices. For simplicity, along the manuscript, we computed inverses to be consistent with the presented
reasoning and we refrained from reporting times, since an efficient solver should never invert a matrix explicitly
(see [34,40,46,47]).
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Fig. 19. Error functions at the end of each training step. eα(x) is the error function evaluated at the α parameter.

Fig. 20. Loss evolution along energy-norm error during the four-step training at problem (32) with 0 ≤ α ≤ 200.
21
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Fig. 21. Loss evolution along H1-norm error during the four-step training at problem (32) with −50 ≤ α ≤ −30.

7. Conclusions and Future Work

We designed a novel DL architecture to solve PDEs that mimics a FEM. Starting from a low-dimensional solution,
we dynamically scale to higher dimensional spaces starting from the solutions found in the previous subspaces. The
method solves both parametric and non-parametric PDEs, depending on the number of variables we establish in the
architecture. While solving non-parametric problems with Deep-FEM is computationally inefficient, the execution
times when solving parametric problems are comparable to non-parametric ones (i.e., the number of employed
iterations is similar), which is where the true power of the method holds. We developed and implemented the Deep-
FEM in one spatial dimension with piecewise-linear approximations and uniform refinements. The extension to more
complicated 2D or 3D geometries, with adaptive meshes, and with higher-order polynomials for the approximations
is straightforward.

The learning approach minimizes the residual of the FEM. Since our Deep-FEM architecture is partially
explainable, we identified relations between the type of training (end-to-end vs. layer-by-layer), the unknowns
arising in the FEM when performing mesh-refinements, and the selected preconditioners and applied norms. Indeed,
the convexity of the loss with respect to the variables is critical and prevents us from obtaining a robust method.
Nonetheless, in almost all shown problems we achieve an adequate level of accuracy for engineering purposes.

We leave as future work to compare the performance of Deep-FEM vs. other methods in context of higher-
dimensional problems and/or specific applications.
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Fig. 22. Four-step predictions on test samples for parametric Helmholtz problem (32) with −50 < α < −30.
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