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Abstract

Neural Networks have been widely used to solve Partial Differential Equations. These methods require to approximate
efinite integrals using quadrature rules. Here, we illustrate via 1D numerical examples the quadrature problems that may arise
n these applications and propose several alternatives to overcome them, namely: Monte Carlo methods, adaptive integration,
olynomial approximations of the Neural Network output, and the inclusion of regularization terms in the loss. We also discuss
he advantages and limitations of each proposed numerical integration scheme. We advocate the use of Monte Carlo methods
or high dimensions (above 3 or 4), and adaptive integration or polynomial approximations for low dimensions (3 or below).
he use of regularization terms is a mathematically elegant alternative that is valid for any spatial dimension; however, it

equires certain regularity assumptions on the solution and complex mathematical analysis when dealing with sophisticated
eural Networks.
2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In the last years, the use of Deep Learning (DL) methods has grown exponentially in multiple areas, including
elf-driving cars [1,2], speech recognition [3,4], and healthcare [5,6]. Similarly, the use of DL algorithms has become
opular for solving Partial Differential Equations (PDEs) — see, e.g., [7–14].

DL techniques present several advantages and limitations with respect to traditional PDE solvers based on Finite
lements (FE) [15], Finite Differences (FD) [16], or Isogeometric Analysis (IGA) [17]. Among the advantages of
L, we encounter the nonnecessity of generating a grid. In general, DL uses a dataset in which each datum is

ndependent from others. In contrast, in the linear system that produces the FEM method there exists a connectivity
etween the nodes of the mesh. The independence of the data in DL allows the parallelization into GPUs for
ast computations. Furthermore, DL provides the possibility of solving certain problems that cannot be solved via
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raditional methods, like high-dimensional PDEs [18,19], some fractional PDEs [20,21], and multiple nonlinear
DEs [22,23].

However, DL also presents limitations when solving PDEs. For example, in [24] they show that Fully-Connected
eural Networks suffer from spectral bias [25] and exhibit different convergence rates for each loss component. In

ddition, the convergence of the method is often assumed (see, e.g., [26]) since it cannot be rigorously guaranteed
ue to the non-convexity of the loss function. Another notorious problem is due to quadrature errors. In traditional
esh-based methods, such as FEM, we first select an approximating solution space, and then compute the necessary

ntegrals over each element required to produce the stiffness matrix. With DL, we first set a quadrature rule and
hen construct the approximated function. Due to this, there is no proper quadrature rule for Deep Neural Networks,
s remarked in [27]. As we will show throughout this work, quadrature errors may be extremely large due to the
nknown form of the integrand. These errors can also be interpreted as a form of overfitting [28,29] that applies to
he PDE constraint (e.g., u” = 0) rather than to the PDE solution (e.g., u). This may have disastrous consequences

since it may result in approximate solutions that are far away from the exact ones at all points.
There exist different methods to approximate definite integrals by discrete data. The most common ones used

in DL are based on Monte Carlo integration. These methods compute definite integrals using randomly sampled
points from a given distribution. Monte Carlo integration is suitable for high-dimensional integrals. However, for
low-dimensional integrals (1D, 2D, and 3D), convergence is slow in terms of the number of integration points in
comparison to other quadrature rules. This produces elevated computational costs. Examples of existing works that
follow a Monte Carlo approach are [30] using a Deep Ritz Method (DRM), [31] using a Deep Galerkin Method
(DGM), and [32], where they employ the so-called PINNs [33] that can be interpreted as a collocation method
or as a variational method using Dirac delta test functions. From the practical point of view, at each iteration of
the Stochastic Gradient Descent (SGD), they consider a mini-batch of randomly selected points to discretize the
domain.

Another existing method to compute integrals in DNNs is the so-called automatic integration [34]. In this
method, the author approximates the integrand by its high order Taylor series expansion around a given point within
the integration domain. Then, the integrals are computed analytically. The derivatives needed in the Taylor series
expansion are computed via automatic differentiation (a.k.a autodiff ) [35]. Since the information of the derivatives
is local, overfitting may easily occur.

Another quadrature rule alternative is to use adaptive integration methods. Examples where authors have selected
these methods are the Deep Least Square (DLS) method [36], where they use an adaptive mid-point quadrature rule
using local error indicators. These indicators are based on the value of the residual at randomly selected points, and
the resulting quadrature error is unclear.

In Variational Neural Networks (VarNets) [37], the authors employ a Gauss quadrature rule to evaluate their
integrals. As error indicators, they use the strong form of the residual evaluated over a set of random points that
follow a uniform distribution.

One can also use Gauss-type quadrature rules to evaluate integrals, as they do in Variational Physics-Informed
Neural Networks (VPINNs) [27]. One limitation of this method is the impossibility of selecting a priori an adequate
quadrature order because properties of the Neural Network approximation are unknown. In addition, the use of fixed
quadrature rules increase the chances of performing overfitting.

While the choice of an adequate quadrature rule is critical for Deep Learning solution of PDEs, and while
different numerical integration schemes exist for this purpose, a work dedicated to analyzing existing quadrature
rule alternatives for DNNs is missing in the literature. Herein, we analyze the problems associated with quadrature
rules in DL methods when solving PDEs, and we propose several alternatives to overcome the quadrature problems:
Monte Carlo integration, exact (Gaussian) integration of piecewise-polynomial approximations, adaptive integration,
and the use of regularizers. We discuss their advantages and limitations and develop adequate regularizers for
certain problems using similar ideas to those presented in [26]. Moreover, we illustrate with numerical examples
the different approximated solutions obtained with the different integration strategies.

For illustration purposes, we focus on a simple one-dimensional (1D) Laplace problem and the Deep Ritz Method
(DRM) [30] as well as the Deep Least-Squares method (DLS) [36]. However, the work presented here and drawn
conclusions are extendable to (a) higher spatial dimensions, (b) different PDEs, and (c) most existing DNN solution
methods, including PINNs [33]. In the same way, the integration methods presented in this work are valid for

different geometries and boundary conditions from the ones considered in this work.
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The remainder of this article is as follows. Section 2 presents our selected model problem. Section 3 defines
he loss functions used in this work for solving PDEs. Section 4 describes our Neural Network (NN) and explains
ome critical implementation aspects. Section 5 illustrates the quadrature problems via two numerical examples.
ection 6 proposes several methods to overcome the quadrature problems and Section 7 shows numerical results
orresponding to the proposed integration strategies. Finally, Section 8 summarizes the main findings and possible
uture lines of research in the area.

. Model problem

Let Ω ⊂ R be a computational domain, and ΓD and ΓN two disjoint sections of its boundary, where ΓD ∪ΓN =

Ω and the subscripts D and N denote the Dirichlet and Neumann bounds, respectively. We consider the following
oundary value problem:⎧⎨⎩−u′′

= f x ∈ Ω , (a)
u = 0 x ∈ ΓD, (b)

u′
· n = g x ∈ ΓN . (c)

(1a)

In the above, n is the unit normal outward (to the domain) vector, and we assume the usual regularity assumptions,
amely, f ∈ L2(Ω ), g ∈ H−1/2(ΓN ), and u ∈ V = H 1

0 (Ω ) = {v ∈ H 1(Ω ) and v|ΓD = 0}, where H 1(Ω ) = {v ∈

L2(Ω ), v′
∈ L2(Ω )}.

In this work we solve two different model problems to illustrate our numerical results.

.1. Model problem 1

The solution of model problem 1 is u(x) = x0.7 and it satisfies Eq. (2).⎧⎨⎩
−u′′(x) = 0.21x−1.3 x ∈ (0, 10),

u(0) = 0,

u′(10) =
0.7

100.3 .

(2)

2.2. Model problem 2

The solution of model problem 2 is u(x) = x2 and it satisfies Eq. (3).⎧⎨⎩ u′′(x) = 2 x ∈ (0, 10),
u(0) = 0,

u′(10) = 20.

(3)

3. Loss functions

We introduce the following standard L2(Ω ) inner products:

(u, v) =

∫
Ω

u v and (g, v)ΓN =

∫
ΓN

g v. (4)

In the following, we consider two methods: the Ritz Method [38], and the Least Squares Method [39].

3.1. Ritz method

Multiplying the PDE from Eq. (1a) by a test function v ∈ V (where V = H 1
0 (Ω )), integrating by parts and

incorporating the boundary conditions, we arrive at the variational formulation:

Find u ∈ V such that (u′, v′) = ( f, v) + (g, v)ΓN ∀v ∈ V . (5)

t is easy to prove that the original (strong) and variational (weak) formulations are equivalent (see, for in-
tance, [40]).
3
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To introduce the Ritz method, we define the energy function FR : V −→ R given by

FR(v) =
1
2

(v′, v′) − ( f, v) − (g, v)ΓN . (6)

As proved in [40], problem (5) is equivalent to the following energy minimization problem:

u = arg min
v∈V

FR(v), (7)

.2. Least Squares (LS) method

Reordering the terms of Eq. (1a) and (1a), we define:

Gu := u′′
+ f x ∈ Ω , (8a)

Bu := u′
· n − g x ∈ ΓN . (8b)

To introduce the Least Squares method, we define the function FL S : V −→ R, where the function v ∈ V satisfies
he Dirichlet conditions:

FL S(v) = |(Gv,Gv)| + |(Bv,Bv)ΓN |. (9)

We want to minimize the function FL S(v) subject to the essential (Dirichlet) BCs. We often find the minimum
y taking the derivative equal to zero and ending up with a linear system of equations. In the context of DL, we
an simply introduce the above loss function FL S(v) directly in our NN. Therefore, we want to find

u = arg min
v∈V

FL S(v). (10)

. Neural network implementation

We train a Neural Network, named uN N (x; θ ), with the following architecture. In this first part, we define the
rainable part of our NN, with learnable parameters θ . We call it uθ . It is composed of:

(1) An input layer. This layer receives the data in the form of a n × d vector, where n is the number of samples
and d is the dimension of the data of the problem.

(2) One hidden dense layer with n neurons and a sigmoid activation function.
(3) An output layer that delivers uθ .

ow, we add more layers to our scheme in order to implement Eqs. (6) or (9). For that, we introduce:

(4) A non-trainable layer to impose the Dirichlet boundary conditions. For that, we select a function φ(x) that
satisfies the Dirichlet conditions of the problem and its value is nonzero everywhere else [41]. In this work,
we select the following φ(x) functions for 1D problems in the interval Ω = [a, b]:

φ(x) =

∏
xD∈ΓD

(x − xD). (11)

Then, we generate a new output of the NN: uN N (x; θ ) = φ(x)uθ (x) that strongly imposes the homogeneous
Dirichlet boundary conditions.

(5) A non-trainable layer to compute the loss function FR or FL S following Eqs. (6) or (9). Within this layer, we
evaluate the integrals and the derivatives. We consider different quadrature rules, being the quadrature points
part of the input data of our NN, along with the physical points of the domain. For computing the derivatives,
we use automatic differentiation, except in some specific cases, where we employ finite differences. These
cases are explicitly indicated throughout the text.

Fig. 1 shows a schematic graph of the described NN architecture. Our software is developed in Python and we
use the library Tensorflow 2.0.

To train the NN, we replace in Eqs. (7) or (10) the search space V by the learnable parameters θ included
in our NN. The result of the minimization is a function uN N (x, θ̃ ), where θ̃ are the optimal learnable parameters
encountered as a result of the training. For simplicity, in the following we abuse notation and use the symbol uN N

˜
to denote also the solution uN N (x, θ ) of our minimization problem.

4
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Fig. 1. Our implementation scheme.

5. Quadrature rules

We approximate our integrals from Eqs. (6) and (9) using a quadrature rule of the form∫ b

a
f (x)dx ≈

n∑
i=0

ωi f (xi ), (12)

here ωi are the weights and xi are the quadrature points. Examples of quadrature rules that follow the above
ormula include trapezoidal rule and Gaussian quadrature rules [42]. We classify these quadrature rules into two
roups: (1) those that only employ points from the interior of the interval; and (2) those that evaluate the solution at
ne extreme point or more (a or b). Integration rules within the later group (e.g., the trapezoidal rule) are inadequate
or our minimization problems because the integrand can be infinite at the boundary points in the case of singular
olutions. Thus, we focus on quadrature rules that only evaluate the solution at interior points of the domain, with
special focus on Gaussian quadrature rules.

.1. Illustration of quadrature problems in neural networks

.1.1. Ritz method
We consider the two model problems from Section 2. We approximate u(x) using the Ritz method. Thus, we

earch for a NN that minimizes the loss functional given by Eq. (6). Our NN has one hidden layer with 10 neurons
31 trainable weights). We use automatic differentiation to compute the derivatives and a three-point Gaussian
uadrature rule to approximate the integrals within each element. We select the Stochastic Gradient Descent (SGD)
ptimizer. For model problem 1, we discretize our domain with four equal-size elements and execute 40,000
terations during the optimization process. For model problem 2, we discretize our domain with ten equal-size
lements and execute 200,000 iterations during the optimization process.

Figs. 2(a) and 2(b) describe the loss evolution of the training process. We obtain a lower loss than the optimum
ne, which corresponds to the loss computed analytically using the exact solution (i.e., FR(uexact )). Therefore, we

are obtaining a solution that delivers a “better” loss than the exact solution, and so we know that our solution must
fail to reasonably approximate the exact one.

Figs. 3 and 4 compare the approximate and exact solutions. We observe a disastrous NN approximation due to
quadrature errors. Figs. 3(b) and 4(b) show that the gradient is (almost) zero at the training (quadrature) points of
the first interval. Therefore, this value minimizes the numerical approximation of (u′, u′). This behavior allows the
approximated solution to reach larger values in the first interval, and consequently maximizing the term ( f, u), and
minimizing the total loss:

FR(uN N ) =
1
2

(u′

N N , u′

N N )  ∑
ω (u′ )2≈0

− ( f, uN N )  
≈∞

−(g, uN N )ΓN ≃ −∞
qi i N N

5
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Fig. 2. Loss evolution of the training process for our two model problems.

Fig. 3. Exact vs approximate Ritz method solutions of model problem 1 using four elements for evaluation of FR(v) and a NN with 31
eights.

The described quadrature errors can be interpreted as overfitting over a condition of the problem given by the
nergy of the solution.

.1.2. Least squares method
We now consider the following one-dimensional problem:{

−u′′(x) = 0 x ∈ (0, 1),
u(0) = u′(1) = 0,

(13)

here the exact solution is u(x) = 0. We can easily construct an approximating function uN N that satisfies Eq. (13)
at the three considered Gaussian points and minimizes Eq. (9), while still being a poor approximation of the exact
solution due to quadrature errors. Fig. 5 shows an example.

6. Integral approximation
We now describe four different methods to improve the integral approximations.

6
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Fig. 4. Exact vs approximate Ritz method solutions of model problem 2 using ten elements for evaluation of FR(v) and a NN with 31
eights.

Fig. 5. Exact (uexact = 0) and approximated solution of problem given by Eq. (13) and solved with the LS method.

6.1. Monte Carlo integration

We consider the following Monte Carlo integral approximation over a set of points xi ∈ (a, b),∫ b

a
f (x)dx ≈

(b − a)
n

n∑
i=1

f (xi ), xi ∈ (a, b) ∀i = {1, . . . , n} (14)

n the above, points xi are randomly selected [43]. While this method is useful for higher-dimensional integrals,
or lower dimensions (1D, 2D, 3D) the computational cost is high since the value of the integral approximation
onverges as 1/

√
n [44].

.2. Piecewise-polynomial approximation

We replace the original NN uN N by a piecewise-polynomial approximation u∗

N N ,·, where · represents the number
of pieces of our piecewise-linear interpolator. This approximation can be exactly differentiated (e.q., via finite
7
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Fig. 6. Neural Network approximation uN N and its four piecewise-linear element approximation u∗

N N ,4.

differences) and integrated (via a Gaussian quadrature rule). Fig. 6 shows an example of the aforementioned case
when we train a NN using four elements with linear approximations within each element.

This method controls quadrature errors. However, it is inadequate for high-dimensional problems as we need a
mesh that is difficult to implement and integration becomes time consuming.

6.3. Adaptive integration

We first consider a training dataset over the interval (a, b) by taking an equidistant partition of n elements. Then,
we define the validation set as a global h-refinement of the training dataset. Fig. 7 shows an example of a training
and the corresponding validation datasets. Then, for each element of the training mesh (e.g., E1 in Fig. 7), we
compare the numerical integral over that element vs the sum of the integrals over the two corresponding elements
on the validation dataset (in our case, E1

1 + E2
1 ). If the integral values differ by more than a stipulated tolerance,

we h-refine the training element, and we upgrade the validation dataset so it is built as a global h-refinement of
he training dataset. This process is described in Algorithm 1. Fig. 7 also shows a training and the corresponding
alidation dataset after refining the first and third elements.

We are able to control the quadrature errors by adding new quadrature points to the training dataset. However,
he simplest way to implement such method is by using meshes, which posses a limitation on high-dimensional
ntegrals. As an alternative to generating a mesh, one can randomly add points to the training set. This entails
ifficulties when designing an adaptive algorithm.

In the same way that we propose an h-adaptive method, we can also work with p-adaptivity [45] or a combination
f them (e.g., hp-adaptivity [46]).

.4. Regularization methods

We now introduce a problem-specific regularizer designed to control the quadrature error.
In a one-dimensional setting, we consider the integral functional FR as given in (6), and its approximation via

a midpoint rule, F̂R , given by

F̂R(u) =
b − a

N

N∑
j=1

(
1
2
|u′(x j )|

2
− f (x j )u(x j )

)
+ g(b)u(b) + g(a)u(a). (15)

e note that g = 0, except where the Neumann condition is imposed. While we focus on the Ritz method, a similar

euristic can be applied to the Least Squares method.

8
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Algorithm 1: Adaptive integration method

Generate a training dataset;
Generate the corresponding validation dataset;
Set tolerance ϵ and maximum iteration number imax ;

hile i < imax do
for j = 1, · · · , n do

Compute integral values I j over the training dataset of elements E j ;
Compute integral values I 1

j ,I 2
j over the validation dataset of elements E1

j ,E
2
j ;

if |(I 1
j + I 2

j ) − I j | > ϵ then
h-refine the E j -th element of the training set;
h-refine the E1

j -th and E2
j -th elements of the validation set;

else
continue;

end
end
i = i + 1;

nd

Fig. 7. Black points (dots) correspond to the original (a) training/(b) validation partitions and blue points (circles) are the points added by
he refinement performed in the first and third elements.

We introduce a function R that depends on the learnable parameters θ of a given Neural Network uN N , such
that for any Neural Network with a given architecture,

|FR(uN N ) − F̂R(uN N )| < R(θ ). (16)

f we then consider a loss function L given by

L(θ ) = F̂R(uN N ) + R(θ ), (17)

hen we may be able to improve the approximation of the quadrature rule, as the loss contains a term that by design
ontrols the quadrature error.

For simplicity, we consider only the case of a single-layer network with a one-dimensional input, and the midpoint
ule for calculating the integral over a uniform partition of (a, b). We consider a mid-point rule as in (15), and
efine the interval length δ =

b−a and intervals I =
(

δ
+ x , x +

δ
)
. We estimate the error of the midpoint rule
N j 2 j j 2

9
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o integrate F as⏐⏐⏐⏐⏐⏐
∫ b

a
F(x) dx −

N∑
j=1

F(x j )δ

⏐⏐⏐⏐⏐⏐ =

⏐⏐⏐⏐⏐
N∑

i=1

∫ x j +
δ
2

x j −
δ
2

(F(x) − F(x j )) dx

⏐⏐⏐⏐⏐
≤

N∑
i=1

∫ x j +
δ
2

x j −
δ
2

⏐⏐F(x) − F(x j )
⏐⏐ dx

≤

N∑
i=1

max
t∈I j

|F ′(t)|
∫ x j +

δ
2

x j −
δ
2

|x − x j | dx

=
δ2

4

N∑
i=1

max
t∈I j

|F ′(t)|.

(18)

This estimate scales as O( 1
N ) for fixed F , and thus, for a large number of integration points, we expect the

estimate to be sufficiently accurate and to avoid “overdamping” of the loss.
With (18) in mind, we estimate the local Lipschitz constants of the integrand as in (6). The numerical estimation

of the Lipschitz constants of NNs has attracted attention, as they form a way of estimating the generalizability of a
Neural Network, and have been used in the training process as a way to encourage accurate generalization [47–49].
As we are dealing with loss functions that involve derivatives of the Neural Network, we however need estimates of
higher order derivatives of uN N . The approach that we employ is similar in spirit to the work of [26] for obtaining
a posteriori error estimates in PINNs.

Despite the arithmetic complications involved in calculating R, conceptually the idea reduces to an application
of Taylor’s theorem. On a single interval of integration I j , we have that for every x , there exists some ξx so that

|F ′(x)| = |F ′(xi ) + (x − xi )F ′′(ξx )| ≤ |F ′(xi )| +
δ

2
∥F ′′

∥∞. (19)

e then find R using a combination of local and global estimates for the derivatives of the integrand corresponding
o simple pointwise evaluations at the integration points and global estimates involving the Neural Network weights.
he exact calculation of the estimates that produce the regularizer R are tedious and deferred to the Appendix,
ith R given in (A.16) via expressions in (A.5) and (A.9).

. Numerical results

In this section, we test some of the alternatives proposed in Section 6 to overcome the quadrature problems.
pecifically, we solve the two model problems from Section 2 using: (a) a piecewise-linear approximation of the
N, and (b) an adaptive integration method. We also solve model problem 2 using regularization methods.
For the cases of piecewise-linear approximation and adaptive integration, we use a NN architecture composed

f one hidden layer with ten neurons and a sigmoid activation function. Moreover, we select SGD as the optimizer.
n the case of regularization, we use a hyperbolic tangent activation function with the Adam optimizer.

.1. Piecewise-linear approximation

We select a piecewise-linear approximation of the NN as our approximate solution. We compute the gradients
sing Finite Differences and the integrals using a one-point Gaussian quadrature rule (i.e., the midpoint rule).
or model problem 1, we use two different uniform partitions composed of four and ten elements, and execute
0,000 iterations. For model problem 2, we use a uniform partition composed of ten elements and execute 200,000
terations.

Figs. 8(a) and 8(b) show that the loss converges to the loss of the exact solution. We also observe better results as
e increase the number of elements, as physically expected. Figs. 9(a) and 9(b) show the corresponding solutions,
hich are consistent with the loss evolutions displayed in Figs. 8(a) and 8(b).
Table 1 shows the loss value of the exact solution, of the optimum piecewise/linear solution, and of the obtained

NN piecewise-linear solution. Since we are solving a 1D Laplace problem, the best piecewise-linear approximation
10
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Table 1
Loss values of the exact solution FR(uexact ), optimum piecewise-linear solution FR(ũ∗

N N ,·) (for
a four and a ten equidistant element partition), and obtained piecewise-linear solution FR(u∗

N N ,·)
using a DNN.

FR(uexact ) FR(ũ∗

N N ,4) FR(u∗

N N ,4) FR(ũ∗

N N ,10) FR(u∗

N N ,10)

Model
problem 1

−1.54 −1.36 −1.31 −1.41 −1.38

Model
problem 2

−666.67 – – −665 −664.99

Fig. 8. Loss evolution of the training process for our two model problems when we use a piecewise-linear approximation of the NN.

Fig. 9. Ritz method solution when we use a piecewise-linear approximation of the NN to solve the problem.

f the solution is its interpolator at the vertex nodes. For model problem 1, we observe that we do not obtain the
est piecewise-linear solution. For model problem 2, we reach the optimum piecewise-solution.

While the use of a piecewise-linear approximation overcomes the quadrature problems, the convergence is
imited to O(h), where h is the element size [50]. To increase this speed, it is possible to consider different
iecewise-polynomial approximations, including the use of r-adaptive algorithms [51].
11
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Fig. 10. Loss evolution of the training process for our two model problems when using adaptive integration.

Fig. 11. Ritz method solution when using adaptive integration.

7.2. Adaptive integration

We compute the gradients using automatic differentiation and the integrals using a three-point Gaussian
quadrature rule. As in previous examples, we start the training with a uniform partition of four elements for model
problem 1 and of ten elements for model problem 2. We select a half-size partition of the training dataset for
validation. For model problem 1, we compare the integral values of the training and validation sets (i.e., we execute
Algorithm 1) every 1000 iterations, with an error tolerance of 0,01; for model problem 2, we compare every 10,000
iterations, with an error tolerance of 10. The tolerance is selected as a small percentage of the value of the loss. In
both cases, we do not execute the adaptive algorithm in the first 10,000 iterations.

Figs. 10(a) and 10(b) show that the loss converges to the optimum value. As explained in Section 6, the adaptive
integration algorithm refines the training dataset. For model problem 1, the algorithm performs two refinements in
the first interval. For model problem 2, one refinement occurs in the first interval. The adaptive integration algorithm
automatically selects the first interval for refinement, where overfitting was taking place in Figs. 3 and 4. Figs. 11(a)
and 11(b) show the corresponding solutions. We observe that the approximate solutions properly approximate the

exact ones.

12
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The extrapolation of this method to higher dimensions (2D or 3D) requires higher-dimensional discretizations
nd quadrature rules.

.3. Regularization methods

We do not apply the regularization method to model problem 1 as the method requires sufficient regularity
n order to provide the necessary estimates in the calculation of R. Since the solution is singular at x = 0, the
ecessary Lipschitz bounds on the integral functional cannot be obtained within this framework. Instead, we aim
o demonstrate that for problems that are sufficiently regular, our technique can avoid overfitting, and leave open
he question as to how one may adapt the technique to singular problems for future work. We thus consider model
roblem 2. We propose the loss defined via

L(θ ) = F̂R(uN N ) + R(θ ). (20)

xplicitly,

F̂R(uN N ) =
10
N

N∑
j=1

1
2
|u′

N N (x j )|
2
− 2uN N (x j ) − 20uN N (20), (21)

where x j =
10
N

(
i −

1
2

)
.

.3.1. Experiment 1
We consider N = 50 points, and a single layer network with M = 10 neurons. We use the Adam optimizer with

earning rate 10−2. We solve model problem 2 with two losses: with and without regularization. In both cases, we
easure the metrics L, R, and F̂R . For validation, we use an equidistant partition of (0, 10) with 49 points, so that
e still use a midpoint rule but with different integration points.
Fig. 12 shows the results without regularization. As expected, we see in Fig. 12(a) that the approximation is

oor due to overfitting, which is most notable around x = 0 and attained within 5000 epochs. Via the provided
lots we can observe the beginning of overfitting in two distinct manners. First, we observe in Fig. 12(c) that the
alue of F̂R evaluated over the validation data begins to diverge from the value on the training data, becoming
pparent at around 1000 epochs. We also see this behavior reflected in the evolution of R in Fig. 12(d), with its
ost dramatic increase beginning around the same iteration. This rapid increase also provokes an increase in L, as

seen in Fig. 12(b). This also indicates that even if R is not used as part of the training process, its increase could
e used as a metric to identify overfitting.

Fig. 13 describes the results with regularization and we observe a different behavior. The approximation is
enerally good, and we do not see any signs of overfitting within 105 epochs, as shown in Fig. 13(a). In particular,
he values of F̂R at the training and validation data remain consistent in Fig. 13(c). Throughout Fig. 13 we see that
ithin 105 epochs all metrics appear to have converged to a limiting value. We obtain final values L ≈ −644.22,

ˆR ≈ −666.07, R ≈ 24.8. We recall that the true energy of the exact solution is FR(uexact ) ≈ −666.667, which
uggests the quadrature rule is accurate. Notice that in the case without regularization, before overfitting became
pparent, R had already attained values of around 1000, which is far larger than the value of R at the obtained
olution when regularization was used.

.3.2. Experiment 2
We now consider a smaller N . As we expect R to scale as 1

N , we anticipate a more adverse effect when N
is small. To view this, we consider the same problem of Experiment 1, where we now select N = 20 integration

oints. We consider M = 10 neurons and minimize our problem using the Adam optimizer with a learning rate of
0−2. As before, we consider the cases with and without regularization.

Fig. 14 presents the loss evolution without regularization. We observe overfitting, which is accompanied by
ivergence of the loss on the validation dataset, as well as a rapid increase in R, with these features visible within
000 epochs.

Fig. 15 presents the results with regularization. We observe no signs of overfitting, with the validation and training
oss remaining close in Fig. 15(b). All metrics appear to have converged to a limiting value within 104 epochs.
13
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Fig. 12. The solution and training information for Experiment 1 without regularization.

However, the large value of R at the found solution (approximately 140) has substantially changed the optimization
roblem so that the obtained minimizer is far from the desired solution. The final value of F̂R is around −622,
hich is far from the desired value of −666.67. This experiment highlights the fact that the regularizer becomes
ore effective when a large number of integration points are used.

. Conclusions & future work

We first illustrated how quadrature errors can destroy the quality of the approximated solution when solving PDEs
sing DL methods. Thus, it is crucial to select an adequate method to overcome the quadrature problems. Herein, we
roposed four different alternatives: (a) Monte Carlo integration, (b) piecewise-polynomial approximations of the
utput of the Neural Network, (c) adaptive integration, and (d) regularization methods. We discussed the advantages
nd limitations of each of these methods, and we illustrated their performance via simple 1D numerical examples.

In high dimensions, Monte Carlo integration methods are the best choice. Regularizer methods are another option,
ut they are problem dependent and they need to be derived for each different architecture. Moreover, they require
urther analysis for highly nonlinear integrands. Furthermore, they are limited only to sufficiently smooth integral
unctionals. In addition, more complex NN architectures (which should be needed in higher dimension) will hinder
he derivation of R.

In low dimensions (three or below), Monte Carlo integration is not competitive because of its low convergence

peed. In these cases, adaptive integration exhibits faster convergence. In the cases of piecewise-linear approximation

14
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Fig. 13. The solution and training information for Experiment 1 with regularization.

and regularizers, we are also able to overcome the quadrature problems, but the convergence speed is often slower
than with adaptive integration.

Possible future research lines of this work are: (a) to implement adaptive integration method in 2D and 3D, (b) to
apply r-adaptivity methods with piecewise-polynomial approximations, and (c) to implement regularizers for high
dimensional problems involving more complex NN architectures.
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Fig. 14. The solution and training information for Experiment 2 without regularization.

Appendix. Estimation of the regularizer

Following the heuristic of Section 6.4, we derive an expression for R that may be used as a regularizer. The
necessary steps are:

1. Using the chain rule, we find global upper bounds for the derivatives of a simple Neural Network in terms
of the weights.

2. Via Taylor’s theorem with remainder and using the global estimates for simple networks, we find local
estimates of the derivatives of NNs with a cutoff function to ensure a homogeneous Dirichlet condition.

3. Using local estimates for the derivatives of a NN, we find local Lipschitz estimates for integrands corre-
sponding to the Ritz method.

We tackle each of these estimations in the following subsections.

A.1. Global estimates for derivatives of a single layer network

Let ûN N be a single layer Neural Network. We write it in the form

ûN N (x) = b1
+

M∑
A1

i σ (A0
i x + b0

i ). (A.1)

i=1
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f

Fig. 15. The solution and training information for Experiment 2 with regularization.

for weights θ = (b1, A1, b0, A0) and an activation function σ . We assume that σ has globally bounded derivatives,
so that ∥σ (n)

∥∞ is finite for every n = 0, 1, 2....
A simple application of the triangle quality and that σ is bounded gives that

|ûN N (x)| ≤ |b1
| +

M∑
i=1

|A1
i σ (A0

i x + b0
i )|

≤ |b1
| +

M∑
i=1

|A1
i |∥σ∥∞

(A.2)

The derivatives of ûN N are

û(n)
N N (x) =

M∑
i=1

A1
i (A0

i )nσ (n)(A0
i x + b0

i ), (A.3)

or n ≥ 1. Similarly, this gives the immediate estimate that

⏐⏐⏐û(n)
N N (x)

⏐⏐⏐ ≤

M∑
|A1

i ||A
0
i |

n
∥σ (n)

∥∞. (A.4)

i=1
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Thus, we define the global upper bounding function R1(θ; n) by

R1(θ; n) =

{
|b1

| + ∥σ∥∞

∑M
i=1 |A1

i | n = 0,

∥σ (n)
∥∞

∑M
i=1 |A1

i ||A
0
i |

n n ≥ 1,
(A.5)

which gives the global upper bound⏐⏐⏐û(n)
N N (x)

⏐⏐⏐ ≤ R1(θ; n) (A.6)

for every x .

A.2. Local derivative estimation of a single layer neural network with cutoff function

Next, we consider the commonly considered case where our Neural Network admits a cutoff function to ensure
a Dirichlet boundary condition, and turn to the case of local estimation. Explicitly, we take uN N (x) = ûN N (x)φ(x),
where φ is zero at the homogeneous Dirichlet condition, and ûN N is as in (A.1). We presume that φ has bounded
derivatives; i.e. ∥φ(k)

∥∞ is finite for k = 0, 1, . . .. Let x be in the interval I j =
(
x j −

δ
2 , x j +

δ
2

)
. Then, we have

u(n)
N N (x) = u(n)

N N (x j ) + (x − x j )u
(n+1)
N N (ξx )

= u(n)
N N (x j ) + (x − x j )

n+1∑
k=0

(
n + 1

k

)
û(k)

N N (ξx )φ(n+1−k)(ξx )
(A.7)

ia Taylor’s theorem with remainder and the product rule for higher order derivatives. Employing the global upper
ounds R1(θ; n) from (A.5), we have that for x ∈ I j ,⏐⏐⏐u(n)

N N (x)
⏐⏐⏐ ≤

⏐⏐⏐u(n)
N N (x j )

⏐⏐⏐ +
δ

2

n+1∑
k=0

(
n + 1

k

)
|û(k)

N N (ξx )||φ(n+1−k)(ξx )|

≤

⏐⏐⏐u(n)
N N (x j )

⏐⏐⏐ +
δ

2

n+1∑
k=0

(
n + 1

k

)
R1(θ; k)∥φ(n+1−k)

∥∞.

(A.8)

Thus, we define the second intermediate regularizer as

R2(θ; I j , n) =

⏐⏐⏐u(n)
N N (x j )

⏐⏐⏐ +
δ

2

n+1∑
k=0

(
n + 1

k

)
R1(θ; k)∥φ(n+1−k)

∥∞, (A.9)

giving the estimate that for all x ∈ I j ,⏐⏐⏐u(n)
N N (x)

⏐⏐⏐ ≤ R2(θ; I j , n). (A.10)

We note that via automatic differentiation, u(n) may be evaluated at the training data x j .

.3. Application to integral errors

Our aim is to estimate the error in the integral functional

F(uN N ) =

∫ b

a

1
2
|u′

N N (x)|2 − f (x)uN N (x) dx − g(a)uN N (a) − g(b)uN N (b), (A.11)

hen approximated by a simple quadrature rule
N∑

j=1

(
1
2
|u′

N N (x j )|
2
− f (x j )uN N (x j )

)
δ − g(b)uN N (b) − g(a)uN N (a). (A.12)

he boundary terms can be calculated in one dimension without quadrature error and thus we ignore their

ontribution. We estimate the error for the quadrature rule by obtaining Lipschitz bounds of the integrand via
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u

⏐⏐⏐⏐ d
dx

(
1
2
|u′

N N (x)|2 − f (x)uN N (x)
)⏐⏐⏐⏐

=
⏐⏐u′

N N (x)u′′

N N (x) − f ′(x)uN N (x) − f (x)u′

N N (x)
⏐⏐

≤ |u′

N N (x)||u′′

N N (x)| + | f ′(x)||uN N (x)| + | f (x)||u′

N N (x)|.

(A.13)

Estimating the (local) Lipschitz constant of the integrand reduces to estimating (locally) various derivatives of
N N . For x ∈ I j , we estimate the Lipschitz constant of the integrand via⏐⏐⏐⏐ d

dx

(
1
2
|u′

N N (x)|2 − f (x)uN N (x)
)⏐⏐⏐⏐ ≤ R3(θ; I j ), (A.14)

where the regularizer R3(θ, I j ) is given by

R3(θ; I j ) =

(
R2(θ; I j , 1)R2(θ; I j , 2) + ∥ f ∥∞R2(θ; I j , 1) + ∥ f ′

∥∞R2(θ; I j , 0)
)
. (A.15)

We define the final regularizer R by

R(θ ) =
δ2

4

N∑
j=1

R3(θ; I j ), (A.16)

which following (18) gives the estimate

|F(uN N ) − F̂(uN N )|

=

⏐⏐⏐⏐⏐⏐
∫ b

a

1
2
|u′

N N (x)|2 − f (x)uN N (x) dx −

N∑
j=1

(
1
2
|u′

N N (x j )|
2
− f (x j )uN N (x j )

)
δ

⏐⏐⏐⏐⏐⏐
≤ R(θ ).

(A.17)
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