

Technical Report

Team Abena

Acknowledgements
The prototype of this device was made possible through the invaluable contribution of “Team Abena”:

• Abdallah Abdel Qader

• Alberto Miro

• Christina Joy Moses

• Judith Andrea Kröll

• Paul-Ioan Maghiari

• Povilas Janusauskas

• Rolandas Kraujelis

• Ronan Machado

• Sharva Yatin Nemane.

We would like to thank Roana de Oliveira Hansen for supervising us throughout this semester and

Syddansk Universitet for giving us the opportunity to innovate and manufacture this device that has the

potential to aid many in the future. We would also like to thank Abena, the company that gave us

foundational advice that led to us creating a medical device.

Foreword
This report details the process of creating the “Sortena” – from conceptualizing the device to creating a

prototype of the device. This project aims to make a device that simplifies the process of taking pills as a

response to a medical condition. Initially targeted toward senior citizens, the prototype of this device

has five containers where the user can store their pills. The prototype also has an in-built display with a

graphical user interface (GUI) where the user can configure a profile and set their unique dosage

schedule. Additionally, the device comes with a phone application that is intended for a nurse or other

medical professional to set up their patient’s dosage schedule.

Index
Acknowledgements 2

Foreword 2

Index 3

Work distribution 1

Functionality & Design Research results 1

Risk assessment 4

Table for risk analysis 4

Mechanical risks 7

Embedded risks 8

Product delimitation and Choice benefit analysis (Abdallah) 9

Design 10

Dispensing Mechanisms ideation 13

Technology choice 15

Microcontroller 15

Motors 17

Electrical components 20

Electric circuits 21

Pump 21

Motors 21

Microcontroller 21

Material choices 22

Graphical User Interface 22

Language 22

GUI Toolkits 24

Clock & Home screen 25

Keyboard 27

Window Organisation 29

Database selection 30

Layout and Formatting 33

Phone Application 37

Conclusion 39

Bibliography 40

Appendix 42

Layout and Formatting 44

Page | 1

Work distribution

Table 1. Work distribution

TEAM MEMBER CONTRIBUTION TO THE PROJECT

Abdallah Abdel Qader
-display programming
-choice benefit analysis

Alberto Miro
-Motor selection & coding

-App development

Christina Joy Moses
Coding the GUI:
- layout and formatting
- keyboard & windows (binding)

Judith Kröll

-Project organisation

-Market opportunity identification for intelligent healthcare

products

-Design & function feedback sessions with potential users

Paul-Ioan Maghiari
-Mechanical design

-Assembly and adjustment of prototype

Povilas Janusauskas

-Assembly of prototype

-Power supply
-Sensor Selection

Rolandas Kraujelis
-Sensor selection

-Power supply

Ronan Machado
-Database setup and saving mechanism

-Risk assessment

Sharva Yatin Nemane
-Home screen & buttons setup
-Microcontroller and LCD setup

Functionality & Design Research results
When comparing “Sortena” to the competing products from the first report (PharmAdva MedaCube, Livi

smart pill dispenser, e-pill MedSmart PLUS, Hero pill dispenser and Spencer -in-home Medication

Dispenser), the main competing factor is still price, which is possible due to focusing this project on basic

functionalities.

 It is trimmed down to what the team considered the most necessary functions while undercutting

competitors on price matters and independence of the product.

 Secure transmission of health data is an important factor to take into consideration, especially when

transferring personal information. There are ways to implement that, which would likely involve a

specified service provider, which in the case of this prototype would go beyond the defined and

achievable scope.

Page | 2

In regard to research for the desirable functions and visual components of the product mostly primary

research was conducted, in the form of questionnaires, reaching 13 health and outpatient care workers

and conducting more in-depth interviews and question sessions with two of them throughout the design

and improvement process.

Since the interviews were conducted in German, here a summarized and put into structured textual

outcome of the surveys.

When asked how the average home care patient would be described the portrayal landed on an around

80-year-old person on light to medium level of ambulatory care, getting checked on once a week, this is

the patient which the following accounts and generalizations will be based on.

 The patient tends to take around 5 different pills per day, with the times of pills taken divided into

morning, noon, evening and night, signifying a pill intake just before bedtime.

A lot of medications are to be taken with food, implying that the pill dispenser location in the dining

room would make sense. In case of a less mobile patient a flexible location setup is recommendable

though.

 When it comes to physical features the product should be built to accommodate people with gross

motor skills, as in big buttons, no sharp edges, and no delicate components to handle with precision.

Another helpful feature will be a loud acoustic signal, since hearing does deteriorate in most people by

the time, they reach the age of 80.

When putting this product on the market in different countries, the language settings should be

adaptable, since it is not that common in the current older generation to fluently understand English

and it is easier for everyone involved if no guesswork must be part of daily routines, rather sticking to

the native language and implementing intuitive symbols and colors is advisable in this case.

There are different mediums that medication comes in, so adding a compartment containing for

instance injections or a different drop zone for fizzy tablets meant to be dissolved in water were

suggested for helping with that, possibly even adding a part responsible for grinding a pill, adding water

and being able to flush that mixture to a stomach tube.

Having the opportunity to access a select few medications on demand like allergy medication that can

be requested as needed and a maximum dosage per day was also brought up.

An additional suggestion was voice control, helping patients that would rather not rely on their motoric

skill when interacting with the system.

When asked what the struggles with pill intake at the time being for most patients was, the problem

most mentioned was the struggle to get the pills out of their packages before taking them.

Other suggestions from this line of questions were to install a detachable cup that can be used for direct

intake of the pill, since they mostly get chugged in one go anyway and this way do not need to be

steered from cartridge to hand to mouth but have a more direct route less prone drop pills and having

to strain oneself looking for them and picking them up after. This cup is also suggested to be machine-

washable, since throughout the course of a day many things tend to accumulate in the corners of

mouths and the pill dispenser should be a sanitary product not fostering bacteria.

Page | 3

Relevant features for the pill dispenser’s display and app features are primarily the alarms and

reminders for taking pills for the patients and a special stress on information to family/caretaker if the

medication has not been taken in a specific time frame. Normally a time frame of 2 hours is okay for

delayed medication intake but for some of them like for example Parkinson medication a time frame of

no more than half an hour is crucial to the well-being of the patient, so reminders and alert periods

should be adjustable for the different medications.

 Also suggested was an adaptable coupling of the pill intake with meal times, so the pills that need to be

taken sober get taken beforehand.

 Since elderly people generally do have quite regular meal times that should be easily realizable and not

change too much after customized to a patient.

The interviews were very insightful, and information gained from them got evaluated together, followed

by being adapted and applied to our scope and possibilities, as will be explained in later chapters of this

report.

Page | 4

Risk assessment

Table for risk analysis
For this project, the risk analysis has only been performed towards the end of the project. It is generally

preferred to have the risk analysis conducted during the development process, to try to predict future

problems.

Table 2. Probability of occurrence

Probability of
occurrence levels

(𝑷𝒐)

Geom.
Ave.
value

Minimum
limit

Maximum
limit

Class Example

1 - - 1.00E-06 Incredible Residual risk

2 3E-0.6 1.00E-0.6 1.00E-06
Very

improbable
Redundant systems

3 3E-0.5 1.00E-0.5 1.00E-04 Improbable
Robust mechanical or

electronic parts

4 3E-0.4 0.0001 0.001 Remote
Mechanical or

electronics device

5 0.32% 0.1% 1% Occasional Sensitive components

6 3.2% 1% 10% Probable
Human errors (paying

some attention)

7 32% 10% 100% Frequent
Human errors (paying

little/no attention)

The probability of a situation occurring is combined with the probability of a failure mode and is defined

as the probability of occurrence. This probability then gets multiplied by the probability of a

corresponding failure mode, which provide us with the final probability of occurrence (𝑃𝑜). The

probability of failure is highly dependent on the equipment/components being used.

Page | 5

Table 3. Probability of detection

Probability of
detection

levels (𝑷𝒅)

Geom.
Ave.
value

Minimum
limit

Maximum
limit

Class Example

1 99.997% 99.990% 99.999%
Automated,

validated det.

Automated
detection/prevention actions,

validated and without need
for human interference.

2 99.97% 99.90% 99.99%
Very high
level of

detection

In Line Test and Procedures in
Production

3 99.7% 99.0% 99.9%
High level of

detection
Trained, Alert Human

Detection

4 97.0% 90.0% 99.0% Remote
Informed Human Detection

(Of
Situation)

5 70.0% 90.0% 99.0% Occasional
Non-Informed, Non-Alert

Human
Detection

Probability of detection will be used as the probability of a situation being identified by the code,

sensors, or humans. In an ideal world, detection would mean that the corresponding failure mode can

be ignored since no harm can happen.

Table 4. Likelihood of harm

The likelihood of harm is the just the combination of the scores of both the probability of detection and

occurrence. This score goes from frequent (occurs almost every time) to incredible (basically never

happens)

Likelihood of harm

𝑷𝒐 + 𝑷𝒅 𝑷_𝒎𝒂𝒙(𝐡𝐚𝐫𝐦) Class

2 – 6 1 1.00E-06 Incredible

7 2 1.00E-05 Very Improbable

8 3 1.00E-04 Improbable

9 4 1.00E-03 Remote

10 5 1.00E-02 Occasional

11 6 1.00E-01 Probable

12 7 1.00E+00 Frequent

Page | 6

Table 5. Severity levels

The levels of severity show the seriousness of a given situation. It goes from inconvenience/no harm to

life threatening.

Table 6. Risk categories

Inconvenience.

No physical
harm

Transient or
minor

disability

Transient
Disability

Severe.
Permanent

Injury

Life
Threatening

Likelihood of
harm

1 2 3 4 5

2 – 6 1 Broadly Acc Broadly Acc
Broadly

Acc
Broadly Acc ALARP

7 2 Broadly Acc Broadly Acc
Broadly

Acc
ALARP Intolerable

8 3 Broadly Acc Broadly Acc
Broadly

Acc
ALARP Intolerable

9 4 Broadly Acc Broadly Acc ALARP Intolerable Intolerable

10 5 Broadly Acc ALARP Intolerable Intolerable Intolerable

11 6 Broadly Acc ALARP Intolerable Intolerable Intolerable

12 7 ALARP Intolerable Intolerable Intolerable Intolerable

In table 5 above, the likelihood of harm and the severity levels are combined to give us a score for the

risk of each situation. The levels of risk are:

- Broadly acceptable (green)

- As low as reasonably possible (orange)

- Intolerable (red)

Severity level Possible occurrence

5 – Life threatening Death

4 – Severe/permanent injury Permanent significant disability

3 – Transient disability Transient but significant disability/permanent minor disability

2 – Transient or minor disability Transient minor disability

1 – Inconvenient/No physical
harm

No disability or physical complaints anticipated. Annoying
complaints

Page | 7

Mechanical risks
The most serious risk related to the mechanical aspect of the project was chosen, incorrect number of

pills dispensed. This could lead to multiple dangerous situations in which the user could be put in harm.

Table 7. User situation and failure modes

User
Situation

User event
Failure
Mode

Failure
Mode
Cause

Probability
of

occurrence

Probability
of

detection

Severity
level

Risk
category

Incorrect
number of

pills
dispensed

User does
not get
correct

mediation

Not
enough

suction to
lift pill

Wear
and tear

2 4 2
Broadly

accepted

Shorted
circuit

2 5 5
Intolerable

Electric
failure

2 5 5
Intolerable

Vacuum is
blocked

Wear
and tear

2 4 2
Broadly

accepted

Misuse 3 5 4 ALARP

Dirt in
machine

3 5 3
ALARP

Pill not
dropped

into
container

Wear
and tear

2 4 2
Broadly

accepted

Motor
failure

3 5 5
Intolerable

Software
failure

2 5 5
Intolerable

Pills stuck
together

Wear
and tear

2 5 2
Broadly

accepted

Dirt in
machine

3 5 3
ALARP

Page | 8

Embedded risks

Table 8. User situation and failure modes

User
Situation

User
event

Failure
Mode

Failure
Mode
Cause

Probability
of

occurrence

Probability
of

detection
Severity

Risk
category

Incorrect
data/loss
of data

User does
not get
correct

mediation

Input data
is incorrect

User error 3 3 5 ALARP

Software
failure

2 5 5 Intolerable

Data
breach

Password
of

database
leaked

1 5 5 ALARP

Hacked 1 5 5 ALARP

Loss of
connection

to
database

Loss of
power to
Raspberry

Pi

2 5 5 Intolerable

Software
failure

2 5 5 Intolerable

Motor drift

Software
failure

2 5 5 Intolerable

Loss of
power to
Raspberry

Pi

2 5 5 Intolerable

Page | 9

Product delimitation and Choice benefit analysis (Abdallah)
As for choosing to build a medical pill dispenser, there are a lot of decisions of what functions to include

which to exclude, and why. First, we did market research to see what other companies and competitors

have in store, and which functions they have in their dispensers. Our main demographic for our device is

older people, therefore we decided to keep the functions as basic and simple as possible.

Some of the functions we were thinking of including:

In regard to the pill dispensing system, one of these would be implemented:

• Outputs the prescribed pills at a certain time and sends a signal

• Sorts pills into weekly assortments

• Outputs specific pills per person

In regard to security and protection:

• Protected medication with some sort of lock system, pin code or fingerprint

Notifications and App configuration:

• Late, skipped or missed dose notifications

• Caregiver notification

• Reporting of loved ones and when they took medications

Quality assurance

• Temperature and humidity sensor, which displays these values on the Serial LCD

• This function is to ensure that the user is aware of the storage conditions of their medication

The functions we included:

Pill dispensing system:

• Outputs the prescribed pills at a certain time

As noticed here, we tried to simplify the process for the user by keeping the main tasks as basic as

possible. The main task is to aid and remind individuals with taking their pills.

Page | 10

Design
 There have been multiple challenges the group faced when it comes to the thought process behind the

design choice and its practicality. Firstly, the medical pill dispenser had to be able to not only pick pills of

varied sizes and weights but also properly place them where a user could easily pick them up after the

machine finished its process. Thus, multiple design choices were explored to find the best option.

Most designed would offer an uncomplicated way of dispensing the pills but they were pill specific and

would run into problems if a different pill were to be placed in the storage containers, then the previous

ones.

The first option the team came up with was a dispensing mechanism that would have containers for

different pill sizes. This design would be efficient in practice, but it would inconvenience the user

because it would require of them to know the specific pill size and shape every time, they refill the

whole build.

 As a result, the team produced the final design we have now which is not only able to dispense any pill

of any size but also of any shape.

The mechanism is divided into two key parts: The lifting mechanism and the pickup point. When signal is

being send to the robot that it must pick up a specific pill, the pickup point is traveling along the X-axis

until it reaches right above one of the storage units for the pills. Then, the lifting mechanism that is

working on the Y-axis is triggered to bring all storage units up, thus allowing the pickup point to take a

pill out of the storage. The lifting mechanism lowers itself afterward with the pickup point returning to

its original position and deactivating the vacuum pump, thus allowing the pill to drop into the cup you

see above.

Page | 11

Outer Casing: Our first challenge was figuring out how to make the outer chasing not only efficient for

the user but also for manufacturing. So, we decided to stick with an uncomplicated design that would

not only be very efficient mechanically but also look good and simple.

The upper part of the main body is see-through while having a door on the back used by the user to refill

the storage units with pills. The lower body contains all the electronics inside of it and is solid, to be able

to hold the weight of the top part pressing on it without risking it bending. It also has 3 spots where it is

open to the user: One is for the LCD to be kept in place, another is for the user to pick up their pills from

the respective cup you see in the picture once the process of dispensing is over, and the last opening is

in the back to ensure easy maintenance for the whole build. For the corners we used Aluminium Bosch

profiles which can be easily manipulated to replace parts of the chasing in case it is required.

Lifting Mechanism: The design of the lifting mechanism is mostly based around the main motor and the

plate holding all the storage units.

The motor shown in the picture above transfers all its energy through a converter into the threaded

shaft connected to it. The plate is then lifted and down based on the rotation of the motor through the

threaded shaft.

In order to keep the plate balanced and to ensure it is not rotating around the threaded shaft, 2 other

non-moving shafts are added on each side. Both these shafts and the threaded rod are aligned on the

center line of the plate for the pickup mechanism not to interfere with them. To reduce the friction

between the shafts and the plate, bearings or bushes need to be added. The connector is strongly

bonded to both the motor and the shaft through screws placed on the side.

Both the motor and the two non-moving shafts are connected to the base plate earther through

lockrings or through screws.

Page | 12

The storage units for the pills are specifically designed to be non-symmetric so that the pickup

mechanism will always be able to reach the bottom no matter what. The containers are not attached to

the main plate threw screw so that in chase a user needs to take one out to wash it can be easily

achieved.

Pickup Mechanism: The pickup mechanism works on the same principle as the lifting mechanism when

it comes to its movement.

Page | 13

A motor is connected to the side wall of the whole build. Again, the energy is being transferred to the

threaded rod that in this case is used to move from one end to the other the tube of the vacuum pump.

A special holder is designed for the tube of the vacuum pump not only to help the tube travel along the

X-axis, but also to move the tube from one end to the other.

There are multiple improvements that can be made for this specific holder like adding to its inside a

special threaded bearing that would allow it to move more easily along the rod but also keep it in place

more properly.

Dispensing Mechanisms ideation
Considering we went through what the final design is it would also be especially important to talk about

the initial concepts and how this design has been achieved. Some information that is discussed here has

also been discussed above for context but now we will dive deeper.

Since the main concept is to build a dispenser for pills the biggest problem as stated beforehand was

how do we manage to achieve this without caring for pill size and shape. The initial idea that sounded

plausible was a tray that will constantly be moved up and down to generate momentum for the pill to

be then dropped onto a platform where it could be collected. This idea was quickly discarded since the

Page | 14

constant movement of the tray could generate so much momentum that all the pills will be dropped not

just one. As a result this idea was discarded.

The second idea that came up to the group was regarding a rotating plate that would have on top of it

the container for the pills. The container would have an opening that would allow one pill to drop onto

the rotating plate. The rotating plate would itself have a whole that would allow the pill to fall. This build

is flawed in the sense of the team needing to have a universal way of picking up any pill that would as

mentioned before not being reliant on size or shape.

Visual representation of a concept for this idea can be found on this YouTube video:

Pill Dispensing Mechanism

Thus, the final idea for the main build came up. It was inspired by a 3D printer mechanism when it

comes to its movement and picking up system. The concept could also be build exactly like a 3D printer

but then the whole space would be taken. The design for the whole build was initially made in NX so

that measurement can be made sure to be accurate and so that changes do not require a complete new

physical piece redone.

https://www.youtube.com/watch?v=tcoCbNUKJPc&ab_channel=FrankCharbonier

Page | 15

The outer chasing as stated has 2 layers, one with Aluminium 3mm plates and one with Lexan 3mm

plates. They are held up together by profiles, each one having rubber railings inside it to hold the plates

in place. Each hole the plates have is made specifically for either components mounted on the holes or

for easy access inside the build. As mentioned, users are not supposed to have access to the bottom

back hole in the aluminium plate.

Technology choice

Microcontroller
This would be a major decision which would affect the entire outlook of the project. Whichever

microcontroller we choose should be the most suitable for our task as it will be the core around which

all functionalities will revolve.

Our overall requirement is that the user should be able to make their selection on an external LCD touch

screen. This should be interpreted by the microcontroller and then call functions; be it hardware or

software protocols like communicating with the motors or saving data respectively.

Therefore, it will be preferable to choose a microcontroller that can implement hardware

communication using a graphical user interface (GUI). As mentioned, we would also like to create a

database to save user information. This entails a large storage size, meaning the microcontroller should

have enough processing power to handle those files.

Since we plan on using motors and an LCD screen, it would be preferable that the microcontroller can

power both those components. Hence the power ratings will also be analyzed. Finally when considering

the cost, we have a large enough budget, however we would like to keep the costs under DKK 1000 as

some will be dedicated to contingencies.

Page | 16

Having kept these requirements in mind, our research from websites like itfoss1, zdnet2 and

electromaker3 yielded 3 options that were the most viable for our project. Below is a table listing the 3

options alongside the requirements that concern us.

Table 9. Microcontroller specifications

 Raspberry Pi 4B (RPi 4B) BeagleBone Black (B3) Le Potato (LeP)

CPU & RAM
size

1.8 GHz & 8 GB (SDRAM) 1GHz ARM Cortex-A8 &
512 MB (DDRL). 4 GB
flash memory.

1.5 GHz ARM Cortex-A53
& 2 GB DDR3-SDRAM.
750 MHz GPU.

Hardware
interface

Bluetooth, 2 x micro-HDMI,
Ethernet port, 2 x USB 2.0, 2
x USB 3.0, micro SDHC slot,
Wi-Fi dual band module

1 x micro-HDMI port,
Ethernet port, 1 x USB
host, Wi-Fi module, 1 x
USB mini

Bluetooth, 4 x USB ports,
Ethernet port, Wi-Fi
module

External
connections

17 x GPIO (16 mA max
each), 4 x UART, 4 x I2C
connectors. 4 x SPI

46 x I/O pins, 4 x UART, 2
x SPI, 2 x I2C, A/D
Converter

40 x I/O pins, alternate
pin functions for I2C, SPI,
PWM, UART and GPIO

Power ratings 600 mA when idle, 1.25 A
under stress. 3 A power
supply recommended.

210 – 460 mA at 5 V. 200 mA at 5 V (headless
connection)

Cost DKK 241.05 DKK 351.95 DKK 1040.98

The aftermath of the introduction of the coronavirus has left a shortage in “chips” or processors due to

the influx in consumption of devices during these times. Therefore, the availability of the

microprocessor should also be taken into consideration.

As visible from the table above, RPi 4B offers the highest processing power and the biggest RAM size. All

of them are equipped with Bluetooth and Wi-Fi modules, which was a necessary requirement on our

part. The RPi 4B only has 17 GPIO pins unlike B3 with 46 and LeP with 40. This will need to be cross-

checked with the connections for the motors and the LCD screen. Since we will be running a GUI

application, having a GPU chip would be beneficial, as offered by the LeP. The RPi needs a specific power

supply, or else it will not be able to operate at high performance. Yet it is the cheapest of them all. It is

also widely used and therefore will not be as rare as the LeP, the latter not available on RS Components.

Thus the obvious choice is the RPi 4B. Even if it is on backorder or takes longer to deliver, its popularity

ensures that we will be able to find and prototype on a used one until the new one arrives.

1 Raspberry Pi Alternatives
2 ZDNet
3 electromaker.io

https://itsfoss.com/raspberry-pi-alternatives/
https://www.zdnet.com/article/what-are-the-best-raspberry-pi-alternatives-everything-you-need-to-know-about-pi-rivals/
https://www.electromaker.io/blog/article/10-best-raspberry-pi-alternatives

Page | 17

Motors
We created a decision matrix to evaluate which kind of motor would be best suited for our project. We

started out by creating different criteria and grading them on a scale of 1-5, with 5 being the best.

 DC motor Stepper motor Servo motor

Control 2 5 5

Torque 3 5 2

Cost 5 3 2

Experience 4 3 2

Total 14 16 11

Table 10. - Motor choice decision

For the control criteria: Stepper and servo motors got a perfect rating for control since they have the

possibility of calculating the angle of the shaft, thus eliminating the need for an encoder.

For torque criterion: Stepper motors got a perfect rating since they have maximum torque at low

speeds, perfect feature for our project as we want to move all the components slowly.

For the cost criterion: Stepper motors are relatively cheap and come with a varying torque value, but

they were higher priced compared to DC motors which led to a rating of 3.

For the experience criteria we all discussed our experience working with different motors. The most

used was the DC motor since we had to use it for many projects, but closely followed by the Stepper

Motor.

We ended up going with a Stepper Motor since it got the highest rating, and it got the best ratings in the

most important criteria, control and torque, as we wanted to move all the components with accuracy at

low speeds. If we could not find a stepper motor within our budget, then we would have probably gone

with a DC motor. This would mean that we would have to include an encoder to measure the shaft angle

and maybe a gear system if the motor does not meet the required torque. This reasons also influenced

our decision to choose Stepper over DC motors.

Stepper Motor Driver Selection
We were looking for a stepper motor driver for a bipolar stepper motor that can handle a current of

0.4A. We were also looking for a stepper motor driver that can meet the requirements but a driver that

had a good shipping time since we didn’t have too much time.

Page | 18

Selected Motor and Driver

 Step Motor 39SH20-0404A

Cost (DKK) 469

Torque (Nm) 0.065

Steps per revolution 200

Supply Voltage (V) 2.64

Rated Current (A) 0.4

Table 11 - Motor specifications

The stepper motor we selected for the project is the bipolar Step Motor 39SH20-0404A.

We ended up selecting this Stepper Motor because we were looking for a small motor, with a decent

torque, that can fit inside our project since we did not have too much space. There were only 2 motors

available in the market, the motor we finally selected and a NEMA 17 pancake. Initially, we went with

the Nema 17 Pancake because it was slightly cheaper, but since it was out of stock in all university

suppliers, we finally used the Step Motor 39SH20-0404A.

The steps per revolution would dictate the speed of our robot, which was not necessarily vital in

meeting the goals. The torque selected is enough to move up all the storage units and move the pump

mechanism. We are planning to use 1 motor for moving the components in the Z-axis and other motor

for moving the pump in the X-axis. Therefore, we had to order two of these motors which it is a cost of

939 DKK. The selected driver was the PModStep Driver since it met the requirements. As we had some

problems with the delivery (it took 1 month to arrive), we ended up using the digital TB6600 stepper

motor driver which we had some of those at the university and we also had experience using those

drivers. The driver has an input voltage range from 9 to 40V and a current range of 0.5 – 4A, perfect

knowing that our motor works at 0.4A, and it is designed to work with bipolar stepper motors. As the

driver can only control one motor, we had to use two stepper drivers to control both motors.

Figure 1 - Step Motor 39SH20-0404A Figure 2 - Motor Driver TB6600

Page | 19

Motor control
Both motors are connected to the TB6600 drivers, using A- A+ B- B+, as the motor is bipolar it only has 4

wires. Both drivers are connected to the power supply (battery or power source), this will feed the

motors correctly. The negative pins (DIR- PUL-) are connected to the ground pins on the Raspberry-Pi.

The PUL+ pins are connected to where we will send pulses to control the motors. Finally, the DIR+ pins

are connected to on the Raspberry-Pi, where we will control the direction of rotation.

Running the motors
The motors are controlled by a code written in Python that is uploaded in the Raspberry-Pi. Initially we

define all the pins, and we also create some variables. Each motor has a different code since they have

different functionalities that will be executed every time their functions are called.

In the first lines we import GPIO as .BOARD to be able to use the board pin

numbering, and we also import “sleep” to set some pauses. Then we define

the pins where the drivers are connected. We also create some variables to

use them as shortcuts in a future for the direction and the steps. And finally,

we define all the pins as Outputs since they are going to send data to the

motor driver.

The rest of the code is divided in two parts. On one hand, there is some code that will be executed,

every time we call its correspondent function, for moving the components up and down. On the other

hand, there is some code that will be executed, every time we call its correspondent function, for

moving the pump mechanism from left to tight or vice versa.

Here, there is created a function called “1motor” that will be

executed every time we call that function for moving the storage

units up and then down. In the line 21 we set the direction of the

DIR pin as Clockwise (1). Then, knowing that 200 steps mean 1 full

rotation and we defined previously numSteps1 to be 800, the

motor will do 4 full-turns and the plate will be moved up. The sleep

(.005) [line 25] expression means the turning velocity, when lower

number the faster it goes. When doing the testing part, we

consider this a reasonable velocity. Then the plate stays up for a

minute, line 28, (enough time to pick a pill). And finally, we change

the direction of turning (0) and it will go down in the same way it

has gone up.

Figure 3 - Motors code I

Figure 4 - Motors code II

Page | 20

In this part, there is created a function called “2motor”, that

receives a value from the main part (Steps2). This value means the

number of steps the motor has to do; therefore, it will determine

the distance the pump will move along the X-axis. If the pump has

to move only until the first storage, this value will be obviously

lower than if it has to move until the last container. The rest of the

code inside the function is the same as the code for the Motor 1.

The only difference is that here we define the distance that must

be moved.

Electrical components
The pump, the microcontroller and the motors require electricity; therefore, the group had to think of a

power supply. The first idea was to build a power supply from scratch. However, after talking with

Power Electronics course lecturer Bente Olsen, students decided to buy a power supply online and then

build voltage converters in order to match the required voltage. This decision was made because of lack

of time and knowledge, as a supervisor, and safety precautions would be needed to not disturb the work

of the University or prevent being electrocuted in case of an error. After analysing the needs of every

electronic component in the project, a table was made:

 Component Voltage Required Amperage Required

Pump 12 V 0.7 A

Motors, × 2 2×2.64 V 2×0.4 A

Microcontroller 5 V 3 A

Display and sensors Will be connected to the Raspberry Pi

Total required: 12 V 4.5 A

The voltage needed is 12 V as every component is connected in parallel. This means that every

component has a 12 V source, while step-down converters lower the voltage if needed. In total, the

device requires a 12V, 0.6A power supply for the vacuum pump, two parallel lines of 2.64V, 0.4A for the

motors controlling the movement of the hose, which is used to pick up the pills, and a 5V and 3A power

supply for the raspberry pi. Since the power adapter which the device is using to convert AC output from

a European household power outlet already outputs a Voltage of 12 Volts, it can be directly used to

power up the vacuum pump. However, to power the other components, reducing this voltage while also

keeping in mind the current requirements is required. The amperage required is 4.5 A, since in parallel

circuits every current is summed. To fulfil the needed parameters, a 12 V, 5 A Phihong PPL65U-120

power supply was chosen.

Figure 5 - Motors code III

Page | 21

Electric circuits
The main part of the circuits is mostly comprised of utilizing different transistors. The voltage coming

from the AC to DC adapter is first split into 4 parallel lines. A 12 V one which can be used to directly

power the vacuum pump, as well as the others which are supplied into two different voltage regulator

circuits so that supply of 5 V as well as two 2.64 V ones may be acquired. For the power supply of 2.6

Volts and 5V for the Raspberry Pi, LM317 and LM2578 voltage regulators are used respectively.

Pump
The vacuum pump already has the needed voltage, therefore there was no need to adjust it. However, if

the voltage source is connected to the pump without any switch in-between, the pump is working

constantly. To control when the vacuum pump is active, a transistor acting as a switch controlled by a

digital output from the Raspberry Pi is used. The gate of the transistor IRF3708 is connected to the

output of the Raspberry Pi which is set to either 5 or 0 Volts, the source is connected to ground, and the

drain to the vacuum pump which is then also connected to 12V power supply. When the gate voltage is

set to high, the transistor passes the 12 volts and when it is set to low, the device is completely off. This

way it is possible to control when the pump must be active using the Raspberry Pi microcontroller.

i

Motors
The motors require 2.64 V each. To power them, two voltage supply lines were used. To step-down the

voltage, an LM317 linear voltage regulator was used. This voltage regulator is adjustable, therefore

proper resistors must be chosen. After experimenting with different rated resistors, it was concluded

that 1 kΩ and 910 Ω resistors were required. The circuit can be found below. If the output voltage is not

stable, a capacitor can be added to prevent the ripple.

Microcontroller
Raspberry Pi requires the voltage supply of 5 V. To achieve this, the same method of using a step-down

voltage regulator is used. However, the challenge here was finding a transistor which can withstand

Page | 22

providing a stable 3A output without frying. After searching through and testing various components,

the group found one which satisfies all the requirements. The LM2576 adjustable voltage regulator can

provide a stable output of 5V and 3A which is why it was used. Another advantage is that it can be

supplied by any voltage between 7 and 60 volts while still outputting the same 5 volts. The picture

below displays the circuit which was used.

Material choices
Considering that the build needs to be both stable and solid the choice of materials for most parts was

made with these criteria in mind.

Another especially key factor we had to take into consideration was the price we wanted to spend on

the materials since we needed to make the project as cost-effective as possible.

For the bottom part of the outer chasing, we went with aluminium since it was both cheap and solid

enough to keep the rest of the structure on top of it. The upper part is made from Lexan to allow for

both visibility and durability. Acrylic was also an option, but we considered Lexan to be more solid and

reliable than Acrylic.

Both the threaded rod and the shaft are made from steel to ensure they will not bend or crack under

pressure.

The connectors should normally have also been made out a steel or aluminium but considering the

current situation the world finds itself in this could not be achieved in time. The storage units are made

of 3D printed PLA.

Thus, most of the criteria we had have been achieved when it comes to the materials we chose.

Graphical User Interface

Language
For graphics rendering, C and C++ are the commonly go-to languages. The compilation of these

languages into native machine code outperforms most other languages. This is an important feature in

applications that require a high number of frames per second. Moreover, C++ is an object-oriented

language, meaning it treats data as objects and classes. Concepts like polymorphism, inheritance and

encapsulation give it a slight edge over other languages when it comes to object oriented programming

(OOP). When programming in this language, the programmer has total control over memory

management as there is no garbage collection. This is because C++ supports dynamic memory allocation

(DMA). Furthermore, it is a very commonly used industry language; meaning there is a vast community

Page | 23

around it. The community size is very important, as it is there one can find solutions to most errors

encountered.

These arguments raised would point to C++ being the ideal language to build our GUI in. We would need

total control of the memory while making databases to store user information; made possible with

DMA. Additionally, the inclusion of classes and inheritance gives it a big edge over its compatriot C. Also,

being taught the basics of both variations of the language in previous semesters, we felt comfortable in

using it.

However, C/C++ are not the easiest to learn. Even though cross-platform GUI libraries are available for

C/C++ like QT, it is not often the easiest to learn due to the complex nature of the language itself. This

reason, combined with the presence of global variables and pointers makes it an “unsafe” language.

Meaning if the part of the memory is an incorrect type, it is possible to corrupt the entire program.

Moreover, the language is also very strict regarding the syntax. A missing comma or semicolon will give

a series of errors. It is also tough to write the code in a readable way, making it less user-friendly and

more rigid.

We learned the basics of QT-programming last semester. Further research also proved that hardware

programming through C++ tougher, although possible with minor abstractions. Considering the General

Data Protection Regulation (GDPR), one of the seven principles include “Integrity and confidentiality

(security)”, the appropriate security measures need to be in place to protect the user data. With this in

mind, we couldn’t risk corrupting the data with internal errors.

We wanted to program in a language that can be used to build the GUI, control the motors, and

communicate with the app. Using the same programming language throughout would ensure

consistency, structured organization and avoid errors caused by confusion through different applications

of a language (C/C++ is a static language while python is dynamic).

Having eliminated C/C++, research output suggested Python, Ruby, Java, .NET, and PHP. Even though

these languages are dynamic, object oriented and can be used in developing cross-platform applications,

we were biased towards Python. The cause of this bias included the immense advantages of learning

Python and the impact it will have on automation in the future, its ability to converge hardware

programming with a user interface and because it was the most associated language with a Raspberry

Pi, the microcontroller of our choice.

Additionally, Python also has huge community platforms, with examples and Q&A platforms; something

immensely helpful when programming. Although we were aware that learning a new programming

language from scratch while doing a project is not ideal, we were encouraged by the easy-to-read and

user-friendly syntax, its similarities to C when it came to hardware programming (GPIO pins instead of

DDRD/C command) and that everyone responsible for code development was prepared to accept the

challenge as well. Tutorials from unofficial and official YouTube channels like “Codemy” and “edureka!”

would also assist enormously.

The programming language to build the GUI will be Python.

Page | 24

GUI Toolkits
While choosing a GUI toolkit, there is no singular correct solution. The various options available can be

used to build a reliable GUI. Therefore, we must evaluate based on the factors that are most important

to us. Some of our considerations include:

• Licensing requirements

• Storage

• Agility and prototyping speed of the framework

• Learning curve

• User community

PYQT
Before starting to compare these toolkits, it is vital to understand what each of these kits are used for.

Even though these are toolkits used for building GUI’s, their platform compatibility might be different.

PYQT is one of the most popular bindings for the QT cross-platform C++ framework. PYQT includes

classes that cover user interfaces, network communication, threads, SQL databases, XML handling and

other such technologies. It is compatible with Windows, Linux, iOS, and Android. This multi-platform

compatibility makes this toolkit very attractive to develop cross-platform applications with a native feel

on each platform.

In addition to these features, PYQT also offers coding versatility. Programming in QT is based around

signals and slots. Meaning, it is possible to create contact between these objects. For example, if a user

clicks the close(); button, the window’s close(); function should be called. Other toolkits

achieve this communication using pointers to a function; known as a callback. In QT however, every

widget has a predefined signal and the response to the signal is called a slot. Although QT’s widgets have

predefined slots, the norm is to subclass widgets and add user-defined slots so we can handle the signals

individually. Furthermore, QT also provides a broad variety of widgets, such as buttons or menus

designed with an interface for all compatible platforms. Since it is also a commonly used UI system,

there is a large variety of community platforms and documentations to further ease development.

However, amongst its multi-platform compatibility, its clever method of handling callback through

signals and slots, there is one major disadvantage. If the application is not open source, a commercial

license fee needs to be paid. However, a way around this is if the GPL or LGPL license requirements are

met. Both these licenses allow the use of this library for commercial purposes. It means we may keep

our source code private. Most commercial software comply with these requirements by dynamically

linking to QT.

Tkinter
Tkinter is an open-source library notable for its simplicity. It is pre-installed in Python (in most cases).

These characteristics gives it a strong position for beginners and intermediates to begin with. Amongst

the numerous advantages it has, the ones impacting us the most were its layered approach, the

accessibility it provides and its portability amongst platforms.

The layered approach that is used in designing Tkinter in the first place means the programmer is free to

use all the advantages of the TK library. Regarding its accessibility, learning Tkinter is very intuitive and

thus can be quick. This is because its implementation hides the detailed and complicated callback in

Page | 25

simple and intuitive methods. Similar to python, this is a continuation of the simplicity of the language

to quickly build prototypes. This is a major benefit for beginner or intermediate programmers.

Additionally, python scripts that use Tkinter do not require modifications to be ported from one

platform to another. It is available on any platform that Python can be implemented on. Moreover, it

also provides the native look and feel of the specific platform it runs on.

However, its simplistic approach does have numerous drawbacks as well. It being easy to learn comes at

a cost of the execution speed. This may affect older or slower machines as most modern computers are

fast enough to cope with the extra processing power it takes. It being too “simplistic” can also be its own

shortcoming. This feature can prevent its use to design complex functions and use it across numerous

devices all connected via a database. Although, it is an open-source application which is very beneficial

to freelance programmers and advantageous when testing new toolkits.

Kivy
Similar to Tkinter, Kivy is an opensource multi-platform library for Python. It can run on iOS, Windows,

Android, and GNU/Linux. It is used to develop applications that implement innovative and multi-touch

UI. Kivy allows the developer to design and build an app once and use it across all devices. This allows

the code to be reusable and deployable, enabling quick and easy interaction design and rapid

prototyping.

If using Kivy, it is also possible to write code once and use it across all platforms. Also similar to the other

2 toolkits, Kivy offers easy to use widgets built with multi-touch support. Furthermore, it also provides

extensive input support for input devices such as mouse, keyboard, TUIO and OS-specific multi-touch

events. Unlike Tkinter however, this toolkit will allow us to create complex applications using numerous

algorithms as the use of functions, regular expressions, etc. is possible. Kivy is also built around us

creating a “Natural User Interface” or NUI. The idea behind this concept being that the user of this UI

can easily learn to use the application with little to no instructions. Also, unlike Tkinter, Kivy does not

attempt to use native controls or widgets, meaning all of its widgets are custom made. Consequently,

this means Kivy applications will look the same across all platforms.

One major disadvantage of using Kivy for programmers learning to code in Python is that Kivy in itself

has a design language called “kv”. This kvlang, as it is called, allows the programmer to create a widget

tree in a declarative manner. This in turn helps bind the widget properties to each other or to callback in

a natural manner. Fast prototyping and agile changes to the UI are possible with this.

It is not required to learn the entire kvlang to program in Kivy; however, if we do not make use of the

array of functionalities provided to us by kvlang, our GUI may become too reliant on the example

widgets already provided. Yet learning two new languages from scratch while also managing other tasks

can prove to be quite tricky.

Since we are using Raspberry Pi and coding in Python not only has its benefits in the present, it will also

be a valuable tool to possess in the future. Therefore, we will develop our GUI in Tkinter.

Clock & Home screen
On the GUI home screen, our aim was to make it look friendly, homely, and inviting. But simple and

efficient at the same time. Because as mentioned earlier, we aimed this device mainly for older individuals,

meaning simplifying the interface would be ideal to only keep the basics visible.

Page | 26

Time in general is a feature we thought would be useful in a home screen interface, hence we added it in

the top of the screen. That includes the time in hours, minutes and seconds; as well as showing the time

zone just below it.

How did we build it?

First step was to import time. Time is just a python universal library and from there we can use it to

access elements in relation with time.

We create a new function called clock, and here we created a few variables we will be using later on in

the code. We have to use the function called strftime which allows us to use different aspects of time.

In the strftime function, we input the directive we are seeking. We used the following directives with the

subsequent meanings:

%I → 12-hour clock as a decimal number

%M → minute as a decimal number

%S → second as a decimal number

%A → weekday name

%p → time in either AM or PM

%Z → time zone offset indicating a positive or negative time difference from UTC/GMT

These directives above are indeed case sensitive, meaning lower case letter means something different

than upper case letter. Which we can see clearly with %p, as it’s the only directive in lower case style.

Outside the function clock, we created two labels, one to display: day, hour, minute, second. And the

other to display the time zone:

Page | 27

Here we also changed the font to Helvetica and foreground colour to black. As well as increasing the

font size of time, to make it easier to read.

Then back in the clock function, we print out the labels. We set the text to equal the variables we set up

earlier, and to make it simpler, we can concatenate this as well.

We also use the function “after” to update our label after a certain period of time, since we are building

a clock here, we update it every minute. So we have the first variable being 1000 milliseconds, and the

second variable being the function clock.

So, what happens is that we call this function clock, it goes through the code, it reaches the function

“after”, then every second it will run the whole function again, updating the time every second.

Keyboard
Something we also built in tkinter python was the keyboard. When a user goes to create their profile in

the new user screen, they get the option to type their name in there. To do that we created a window

with keyboard buttons on there.

Since we the keyboard would be displayed in front of another window, we thought it would be best if

we made the keyboard transparent to a certain degree. Which we did using the following:

Page | 28

Here we use the attribute alpha to change the transparency of the window. After trial and error, we

decided that the opacity value of 0.7 would be the best value for alpha, because the transparency was

perfect.

In regards to creating the buttons themselves, an example of a few can be seen here:

We created a tkinter button for each keyboard button we needed. Using the grid geometry manager, we

specified directly where the keys themselves would be located. And for the keys to actually work as

buttons, as in when clicked they type, we created a function called “press”, and a global variable exp,

when clicking a button, the key is stored in that variable, and converted and stored as a string. We also

used the .set() method to set and change the stored values with in a tkinter variable.

Then for the enter and clear buttons, we created these functions to utilize them accordingly:

To place the buttons in the correct location, we also used the .grid() method to set the row and column

of each button properly.

Button Q vs Button M:

Page | 29

Window Organisation
Since we have many different windows that play part in this GUI, organisation is crucial to keep track of

how the windows are supposed to work together, and for the GUI to appear neat and friendly to the

user.

To make the windows open on each other, and not scatter away when opened, we used the

overrideredirect() function and set its flag to True.

Some windows that we have designed are set to keep being on top, when opened. This is done for the

keyboard window for example. By using -topmost option in .attributes(), we make the window always

be on top of all the other windows.

Zero is considered false, hence we put 1 in there, as any other non-zero number means true.

To create different windows, and organize them accordingly, we used the toplevel() function. The first

window we created was the root window and it showed a big window on the screen.

To create a different window, we first have to define it, and set it equal to Toplevel(), if we run that we

create a new window.

Now anything we want to include, design or built on that new window, we have to do after that line.

As we can see here, in button usr1btn, we insert root as the window we want it to appear on, while on

label L1, we inserted top. This is a way to designate different windows that way.

Page | 30

Database selection
When it came to creating a database to store the user’s information, we had initially used SQLite. We had

written the code and got it to work, but after conducting more research we realized that MySQL was a

better option. Both have their advantages and disadvantages but when looking at our project it was clear

that MySQL was the better option.

Table 1312. Database comparison

Comparison between SQLite and MySQL4

MySQL SQLite

Requires a database server to interact with the client
over the network

Serverless embedded database that runs as
part of the application and cannot connect

with any other application over the network

Can handle multiple connections simultaneously Can handle only one connection at a time

Highly scalable and can handle large volume of data
very efficiently

Can handle only small set of data if the
volume of data increased its performance

degrades

Requires large space in the memory for its functioning
(~ 600 Mb)

Requires some Kbs of space – very
lightweight (~ 250Kb – 300 Kb)

Supports multiple user environments Does not support multiple user environments

Can create multiple users with different levels of
permissions and roles

Does not have this feature

Offers and supports many authentication methods to
protect the unauthorized access of the database.

Includes basic username and password protections to
advance SSH authentication

Does not have any inbuilt authentication
technique and the database files can be

accessed by anyone. They can also read and
update the data as well

Setting up the MySQL server requires many server
configurations

Does not need any configuration and getting
it up and running is very easy compared to

MySQL

Has its own API Does not have its own API

After considering the reasons listed in table 10 above, we decided to use the MySQL database. The main

reasons were because it has its own API, is highly scalable, can create multiple users with different levels

of permissions and offers better security (from basic username to passwords to SSH authentication). The

only benefit we could see by using SQLite was that it was very lightweight (~ 250 Kb) and that the server

configuration is much easier (do not need to set one up).

Table 1413. Databse user_info

Variable name What it stores

name_entry User’s name

p1_entry Total amount of pill 1 they want during the day

p2_entry Total amount of pill 2 they want during the day

p3_entry Total amount of pill 3 they want during the day

p4_entry Total amount of pill 4 they want during the day

4 “Difference between MySQL and SQLite.” GeeksforGeeks, 7 May 2020, www.geeksforgeeks.org/difference-

between-mysql-and-sqlite/.

Page | 31

p5_entry Total amount of pill 5 they want during the day

p1_morning Amount of pill 1 user wants in the morning

p1_afternoon Amount of pill 1 user wants in the afternoon

p1_evening Amount of pill 1 user wants in the evening

p2_morning Amount of pill 2 user wants in the morning

p2_afternoon Amount of pill 2 user wants in the afternoon

p2_evening Amount of pill 2 user wants in the evening

p3_morning Amount of pill 3 user wants in the morning

p3_afternoon Amount of pill 3 user wants in the afternoon

p3_evening Amount of pill 3 user wants in the evening

p4_morning Amount of pill 4 user wants in the morning

p4_afternoon Amount of pill 4 user wants in the afternoon

p4_evening Amount of pill 4 user wants in the evening

p5_morning Amount of pill 5 user wants in the morning

p5_afternoon Amount of pill 5 user wants in the afternoon

p5_evening Amount of pill 5 user wants in the evening

user_id Unique id given to each user

The information that the database stores is the user’s name, what pills they take, when they would like

to take them and the number of pills they would like to take at certain times. The other database stores

information about what pills are in the dispenser, the amount of each pill, and the time they what the pills

to be dispensed. This can be seen more clearly in the tables 11 and 12.

Page | 32

Table 1514. Database local info

Variable name What it stores

P1_name Name of pill 1

P2_name Name of pill 2

P3_name Name of pill 3

P4_name Name of pill 4

P5_name Name of pill 5

P1_total_amount Total amount of pill 1 in dispenser

P2_total_amount Total amount of pill 2 in dispenser

P3_total_amount Total amount of pill 3 in dispenser

P4_total_amount Total amount of pill 4 in dispenser

P5_total_amount Total amount of pill 5 in dispenser

P1_morning_time Time they want pill 1 dispensed in morning

P1_afternoon_time Time they want pill 1 dispensed in afternoon

P1_evening_time Time they want pill 1 dispensed in evening

P2_morning_time Time they want pill 2 dispensed in morning

P2_afternoon_time Time they want pill 2 dispensed in afternoon

P2_evening_time Time they want pill 2 dispensed in evening

P3_morning_time Time they want pill 3 dispensed in morning

P3_afternoon_time Time they want pill 3 dispensed in afternoon

P3_evening_time Time they want pill 3 dispensed in evening

P4_morning_time Time they want pill 4 dispensed in morning

P4_afternoon_time Time they want pill 4 dispensed in afternoon

P4_evening_time Time they want pill 4 dispensed in evening

P5_morning_time Time they want pill 5 dispensed in morning

P5_afternoon_time Time they want pill 5 dispensed in afternoon

P5_evening_time Time they want pill 5 dispensed in evening

User_id Unique id

Page | 33

Layout and Formatting

The G (graphics) in GUI is determined by the layout and formatting of each window. The GUI in the in-

built display for this device was made in such a way that the “language” of the device is simple and quick

to understand. The chosen color palette was based on the Abena logos. There are only four colors in this

GUI – ‘Abena blue’, white, ‘Abena green’ and red. The primary color of the GUI is blue, and the

complimentary color is white. Green is used for the user profile buttons and as an “active”5 color when

clicking on most buttons. Red is used as an “active” color when clicking on the buttons that lead to

deletion of the specified user. Most of the font is bold and some of the font is in italic to differentiate

titles and subheadings from inputted values (such as the pill names).

Firstly, it was helpful to divide each window in different parts. This was done with using the LabelFrame

method. The syntax of a frame is as follows:

name = LabelFrame (*master*, *options*)

The name is the name given to the frame widget.

Master is the parent widget/window.

The options used in the code are in the table below.

5 explained later

Figure 7. A typical window in the GUI Figure 6. "Delete user" window

Figure 9. Frame with default border Figure 8. Frame with borderwidth=0

Page | 34

Table 1615. Options used for Label Frame

Option used
Default
attribute

Possible attributes
(if relevant)

Description

bg

various colour names
(e.g. white),
hex code (erg.
#043b82)

determines the background colour of the widget

borderwidth 2
determines the width of the border (0 was used to
make the frame “invisible”)

There are multiple methods available to structure widgets onto the screen – pack, place, and grid. Pack

was most commonly used as it was easy to arrange the widgets in a specific order and the fill and

expand options made it simple to extend the

widget in specific directions. Grid was used in the

keyboard since there were a lot of buttons and on

the home screen. The advantage of using the grid

function, is that if there is a widget missing (for

example, when only 2 users are created, as seen in

Figure 10 and Figure 11), it adjusts the widgets

accordingly, without compromising the intended

layout of the widgets. Place was avoided as much

as possible, as it required us to calculate the precise

number of pixels if using the options x and y.

However, when using anchor, relx and rely, the

place() method was particularly helpful since it allowed us to overlay widgets and reduce the overall

space occupied by a group of widgets (as seen in Figure 12). In Table 1716 below, the methods are

explained in further detail.

Figure 12. Place method allowing overlay (pink added
on some labels for clarity)

Figure 11. Grid method (frame border added for clarity) Figure 10. Grid method (frame border added for clarity)

Page | 35

Table 1716. Options used for pack(), grid() and place() explained

Method Options used
Default
attribute

Possible attributes
(if relevant)

Description

pack()

side TOP
TOP, BOTTOM, LEFT,
RIGHT

determines which side of the parent to attach
this widget to

fill NONE
NONE, X (only
horizontal), Y (only
vertical), BOTH

determines whether the widget must take up
extra space

expand False True, False

when set to ‘True’, the widget takes up extra
space (fill determines whether it takes up
space horizontally, vertically or in both
directions)

grid()

row, column 0 row or column to put widget in (starts from 0)

rowspan,
columnspan

1
how many rows or columns the widget
occupies

ipadx, ipady 0
number of pixels used to pad the widget on
the inside

padx, pady6 0
number of pixels used to pad the widget on
the outside

place()

anchor NW
N, S, E, W, NE, NW,
SE, SW

determines which corner/side the widget
refers to for the other options

relx, rely 0.0 - 1.0
determines how much to offset the widget
by, as a fraction of the width and height of
the parent

6 note padx and pady were used in many elements, not only in the place() method

Page | 36

In Table 1817 below, there is a list of options used for formatting in the code, that were not mentioned

above.

Table 1817. Additional options used for formatting

Option Possible attributes (if relevant) Description

text
used to display text on
top of the widget

font
font family, point size, style modifiers (e.g.
("Helvetica","22","bold"))

used to display the
stylized text on the
screen

fg various color names (e.g. red),
hex code (e.g. #00a047)

determines the
foreground color of the
widget

activeforeground
foreground color of the
widget when it is
clicked on (“active”)

activebackground
background color of
the widget when it is
clicked on (“active”)

width
sets the width of the
widget

height
sets the height of the
widget

Moreover, in certain windows, there were some

practical reasons why the layout could not be

optimal. The in-built display of the device is

800x480 pixels so that is the maximum window

size. For example, in the first window that appears

when clicking on “Create User” (let’s call it

“timeslot setup”). In this window, there are option

menus that have ten options. Since there are five

possible pills, there needs to be space for at least

14 options vertically, excluding titles and

subheadings. So, compromises needed to be made,

in order to accommodate all the available options.

Therefore, the timeslot setup window does not look particularly aesthetically pleasing as seen in the

figure.

Figure 13. Timeslot Setup window

Page | 37

Configure was used in certain places to modify

attributes of a widget after initialization (such as

window background colors and option menus).

In hindsight, the “language” of this GUI is simple, easy, and quickly understandable. In the pictures7

above, an overview of the “look overhaul” of the GUI is shown. One error I made is that I did not

properly study the ttk.Style() method because the code would have had lesser lines if I used it. It would

also allow for much, much easier style changes, whereas now, I would have to manually each and every

widget and window configuration and more. Just to illustrate this point further, Figure 16 below is an

example of formatting one option menu’s button and dropdown menu.

Figure 16. One option menu's style configuration

Phone Application
The phone app has been created on MIT App Inventor; an online software designed exclusively for

application design. It has many screens, that will be explained below, where you can insert, edit and

delete some data, and also connect it to the Raspberry-Pi to send all the information.

The software has two different options when creating the app. First, it has a “Design” screen where you

can modify all the components that will be viewed as buttons, labels, pictures… this is like the Hardware

part of a PC. Then, it has an “Embedded” screen where you insert the code to program the app. For

coding, it uses blocks instead of text and lines, to make the software more accessible and user-friendly

to the users. Some examples of the block used will be attached in the Appendix.

7 all pictures of the GUI will be attached in Appendix for clearer viewing

Figure 15. Option menus

Figure 14. Initial version of the GUI without formatting

Page | 38

So, the steps to follow when creating an app in MIT App Inventor are:

1. Edit the user interface, adding all the components that you want to be visible by the user.

2. Program all the visible components in the screen, as buttons, links, databases, passwords…

There is space for 3 users in the app, there is no relation between them. Each one is a unique user inside

the system.

All the data is saved in variables in the same way as it is done in the GUI, this means that the app deals

with around 160 variables.

There is implemented a Database in the app that saves all the data and variables used and stored in the

app: usernames, dispensing time, amount, names… This has been done so as not to have to enter all the

values whenever the application is started. So, no matter if the app is closed or minimized, all the values

are saved in the database. It is needed to say that the database is a completely different database than

the one using in the Raspberry Pi.

Now, all the different screens and functionalities will be explained:

INITIAL PASWORD SCREEN: the app will request the user to type a password in order to go inside the

system. This will make the app only usable by the registered users.

MAIN SCREEN: in this screen you will see all the users registered in the system. It is also possible to

create a new user, as well as edit some information or even adjust some settings about the pills.

PILL SETTINGS SCREEN: the app gives the opportunity to enter the name of the pills that are going to be

dispensed, as well as the amount of each different pill.

NEW USER SCREEN: if you click on the new user button in the main screen you will be redirected here.

When creating a user, you will need to type your name (otherwise you are not going to be able to create

a user), and the time you want each pill to be dispensed. The app has the feature of distinguishing

between morning, afternoon, and evening. Then it will request you the amount of each pill to be

dispensed.

NEW USER CREATED: when a new user is created 3 new buttons appear to know the status of the user:

• INFORMATION ABOUT USER: if you press the Information button, a new screen will be opened.

Here, you will see a schematic that contains your name, name of the pills, dispensing time as

well as the amount. At the bottom, the app has the functionality to connect a Bluetooth device,

in this case the Raspberry Pi will be connected. So, when both devices are connected, you will be

able to send all user information (including all the things mentioned before) to the Raspberry Pi

by pressing the “Send all Info” button. All the data will be stored in the Raspberry Pi.

• EDIT USER SCREEN: if this button is pressed, the new user screen will be opened again. Here,

you will be able to edit anything that has to be changed. Since the app has a Database, it will

remember all the names, times, numbers, etc. This is more user-friendly since the user will only

need to change the desired value, instead of defining everything again.

• DELETE BUTTON: if this button is pressed, means that a user wants to be removed from the

system. Then, it will appear an alert to make sure that it was not a mistake. If the “Yes” button is

Page | 39

pressed, all the data related to that user will be removed from the app as well as from the

Database.

All the different screens are attached to the Appendix.

Conclusion
The first goal of the project was to draft up an idea for a useful and necessary product in the healthcare

sector with integrated sensors and intelligent reading that the partnered company Abena would be able

to implement in the future.

This is followed by the development of a product prototype, which was both fulfilled within the

intended time frame.

The company representative from Abena was not able to advise much when it came to the creation of

the prototype and technical details since the team chose to go with the development of a new product

rather than improving upon an already existing one implemented by the company.

Due to the current situation with covid and deliveries of materials a lot of ideas regarding the

mechanical part of the project had to be delayed or cancelled completely. This is mostly visible in the

pickup point part of the machine or the lifting mechanism since certain parts would take too long to

deliver or in experience from earlier orders throughout the semester kept postponing delivery times.

After those unexpected bottlenecks and delays with component deliveries the first version of a physical

prototype was able to be assembled and as a concept mechanically achieves its goal.

The missing parts mentioned earlier are not strictly vital to the function of a prototype, but where hard

to work around after settling on a set-up and counting on ordered components to arrive.

Their timely arrival would have improved the pill dispenser in its functionality, letting the team

transform it into the better-rounded product that was originally planned.

The different subsystems of lifting mechanism, pump-assisted pill pick up and the code for interactive

display and app function correctly, whereas the system assembled as a whole has not been able to be

successfuly tested in regard to functionality, solely the fit of the real components has been able to be

tested and adjusted until this point.

In conclusion, after a semester's work the project demonstrates the functionalities of the smart pill

dispenser that was developed together and the team is confident that the product can be further

developed into a valuable item Abena will be able to distribute and continue on their mission to help

people.

Page | 40

Bibliography
https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-

regulation-gdpr/principles/

https://maker.pro/custom/tutorial/which-programming-language-should-i-choose-graphics-and-guis

https://www.quora.com/Could-I-use-C-for-hardware-programming

https://www.quora.com/What-can-Python-do-that-C-can-t

https://www.decipherzone.com/blog-detail/top-programming-languages-for-desktop-apps-in-2021

https://www.youtube.com/user/edurekaIN

https://www.youtube.com/channel/UCFB0dxMudkws1q8w5NJEAmw

https://realpython.com/python-pyqt-gui-calculator/

https://doc.qt.io/archives/qt-4.8/signalsandslots.html

https://www.gnu.org/philosophy/selling.en.html

https://www.geeksforgeeks.org/what-is-kivy/

https://itsfoss.com/raspberry-pi-alternatives/

https://www.geeksforgeeks.org/difference-between-mysql-and-sqlite/

https://hevodata.com/learn/sqlite-vs-mysql/

https://www.educba.com/mysql-vs-sqlite/

https://www.youtube.com/watch?v=ruohUTTo8Kw&ab_channel=Codemy.com

https://docs.python.org/3/library/time.html

https://stackoverflow.com/questions/18394597/is-there-a-way-to-create-transparent-windows-with-

tkinter

https://masterprograming.com/how-to-create-virtual-onscreen-keyboard-using-python-and-tkinter/

https://www.quora.com/What-does-the-set-variable-do-in-Python-3-Tkinter

https://stackoverflow.com/questions/65046290/what-does-the-one-in-tk-wm-attributes-topmost-1-

mean

Create New Windows in tKinter - Python Tkinter GUI Tutorial #14

https://www.youtube.com/watch?v=qC3FYdpJI5Y&ab_channel=Codemy.com

Page | 41

https://microcontrollerslab.com/lm2576-step-down-voltage-regulator/

https://electronics.stackexchange.com/questions/334454/mosfet-switch-not-working-as-expected

ON Semiconductor, “1.5 A Adjustable Output, Positive Voltage Regulator”, LM317 datasheet, Jan. 2002

https://youtube.com/playlist?list=PLCC34OHNcOtoC6GglhF3ncJ5rLwQrLGnV

https://www.tutorialspoint.com/python/tk_pack.htm

https://www.tutorialspoint.com/python/tk_grid.htm

https://www.tutorialspoint.com/python/tk_place.htm

https://www.tutorialspoint.com/python/tk_labelframe.htm

https://www.tutorialspoint.com/python/tk_colors.htm

https://www.tutorialspoint.com/python/tk_fonts.htm

https://www.delftstack.com/howto/python-tkinter/how-to-set-font-of-tkinter-text-widget/

https://www.geeksforgeeks.org/python-add-style-to-tkinter-button/

https://stackoverflow.com/questions/42511123/utility-of-config-in-python-tkinter/42511195

https://www.pythontutorial.net/tkinter/tkinter-window/

https://microcontrollerslab.com/lm2576-step-down-voltage-regulator/

Page | 42

Appendix

Figure 17-Password screen
Figure 19-Pills settings screen

Figure 18 - Main Screen

Figure 22 - New User Screen I Figure 21 - New User Screen II
Figure 20 - Selecting the time for pill

dispense

Page | 43

Figure 24 - User information screen

Figure 23 - Bluetooth connection

Page | 44

Layout and Formatting
A typical window in the GUI

"Delete user" windowFrame with default border

Page | 45

Frame with default border

Frame with borderwidth=0

Page | 46

Grid method (frame border added for clarity)

Grid method (frame border added for clarity)

Page | 47

Place method allowing overlay (pink added on some labels for clarity)

Timeslot Setup window

Page | 48

Option menus

Figure 14. Initial version of the GUI without formattingInitial version of the GUI without formatting

Page | 49

i

1/3/22, 11:51 PM tmpauspnjrt.html

file:///C:/Users/music/AppData/Local/Temp/tmpauspnjrt.html 1/27

from tkinter import *
import tkinter as tk
from tkinter import ttk
import time
import mysql.connector
import tkinter.font
#from PIL import ImageTk,Image

def start_gui():
 global root
 root=Tk()
 root.geometry("800x480")
 root.overrideredirect(True)
 root.configure(bg="#043b82")

 #database that contains all information regarding each user
 #connecting to MySQL database
 mydb_user_info=mysql.connector.connect(
 host="localhost",
 user="root",
 passwd="password123",
 database="user_info"
)

 #creating a cursor and intializing it
 my_cursor=mydb_user_info.cursor()
 my_cursor=mydb_user_info.cursor(buffered=True)

 #creating a database and table for database (if necessary)
 my_cursor.execute("CREATE DATABASE IF NOT EXISTS user_info")
 my_cursor.execute("CREATE TABLE IF NOT EXISTS users (name_entry VARCHAR(255),\
 p1_entry INT(5),p2_entry INT(5),p3_entry INT(5),p4_entry INT(5),p5_entry INT(5),\
 p1_morning INT(5),p1_afternoon INT(5),p1_evening INT(5),\
 p2_morning INT(5),p2_afternoon INT(5),p2_evening INT(5),\
 p3_morning INT(5),p3_afternoon INT(5),p3_evening INT(5),\
 p4_morning INT(5),p4_afternoon INT(5),p4_evening INT(5),\
 p5_morning INT(5),p5_afternoon INT(5),p5_evening INT(5),\
 user_id INT AUTO_INCREMENT PRIMARY KEY)")

 #printing out contents of the table above to terminal
 my_cursor.execute("SELECT * FROM users")
 result=my_cursor.fetchall()
 for x in result:
 print(x)

 #database to store names and amount of pills
 #connecting to MySQL database
 mydb_local_info=mysql.connector.connect(
 host="localhost",
 user="root",
 passwd="password123",
 database="local_info"
)

 #creating a cursor and initializing it
 my_cursor_local_info=mydb_local_info.cursor()
 my_cursor_local_info=mydb_local_info.cursor(buffered=True)

 #creating a database and table for database (if necessary)
 my_cursor_local_info.execute("CREATE DATABASE IF NOT EXISTS local_info")
 my_cursor_local_info.execute("CREATE TABLE IF NOT EXISTS info (\
 p1_name VARCHAR(255),p2_name VARCHAR(255),p3_name VARCHAR(255),p4_name VARCHAR(255),p5_name VARCHAR(255),\
 p1_total_amount VARCHAR(255),p2_total_amount VARCHAR(255),p3_total_amount VARCHAR(255),\
 p4_total_amount VARCHAR(255),p5_total_amount VARCHAR(255),\
 p1_morning_time VARCHAR(255),p1_afternoon_time VARCHAR(255),p1_evening_time VARCHAR(255),\
 p2_morning_time VARCHAR(255),p2_afternoon_time VARCHAR(255),p2_evening_time VARCHAR(255),\
 p3_morning_time VARCHAR(255),p3_afternoon_time VARCHAR(255),p3_evening_time VARCHAR(255),\
 p4_morning_time VARCHAR(255),p4_afternoon_time VARCHAR(255),p4_evening_time VARCHAR(255),\
 p5_morning_time VARCHAR(255),p5_afternoon_time VARCHAR(255),p5_evening_time VARCHAR(255),\
 user_id_local INT AUTO_INCREMENT PRIMARY KEY)")

 # #printing out contents of the table above to terminal
 # my_cursor_local_info.execute("SELECT * FROM info")
 # result=my_cursor_local_info.fetchall()
 # for x in result:
 # print(x)

1/3/22, 11:51 PM tmpauspnjrt.html

file:///C:/Users/music/AppData/Local/Temp/tmpauspnjrt.html 2/27

 '''
 def openkeyboard(event):
 key = tk.Tk() #key window name
 key.geometry("800x480")
 key.overrideredirect(True)
 key.configure(bg="#043b82")

 # function coding start
 exp = " " # global variable
 # showing all data in display

 def press(num):
 global exp
 exp=exp + str(num)
 equation.set(exp)
 # end

 # function clear button

 def clear():
 global exp
 exp = " "
 equation.set(exp)
 # end

 # Enter Button Work Next line Function

 def action():
 exp = " Next Line : "
 equation.set(exp)
 # end function coding

 # Tab Button Function
 #def Tab():
 #exp = " TAB : "
 #equation.set(exp)
 # END Tab Button Fucntion

 # Size window size
 key.geometry('800x195') # normal size
 key.maxsize(width=800, height=195) # maximum size
 key.minsize(width= 800 , height = 195) # minimum size
 # end window size

 #key.configure(bg = 'white') # add background color
 #key.wm_attributes("-transparentcolor", True)
 # entry box
 key.attributes("-alpha", 0.7)
 #equation = tk.StringVar()
 #Dis_entry = ttk.Entry(key,state= 'readonly',textvariable = equation)
 #Dis_entry.grid(rowspan= 1 , columnspan = 100, ipadx = 999 , ipady = 20)
 # end entry box

 # add all button line wise

 # First Line Button

 q = ttk.Button(key,text = 'Q' , width = 6, command = lambda : press('Q'))
 q.grid(row = 1 , column = 0, ipadx = 6 , ipady = 10)

 w = ttk.Button(key,text = 'W' , width = 6, command = lambda : press('W'))
 w.grid(row = 1 , column = 1, ipadx = 6 , ipady = 10)

 E = ttk.Button(key,text = 'E' , width = 6, command = lambda : press('E'))
 E.grid(row = 1 , column = 2, ipadx = 6 , ipady = 10)

 R = ttk.Button(key,text = 'R' , width = 6, command = lambda : press('R'))
 R.grid(row = 1 , column = 3, ipadx = 6 , ipady = 10)

 T = ttk.Button(key,text = 'T' , width = 6, command = lambda : press('T'))
 T.grid(row = 1 , column = 4, ipadx = 6 , ipady = 10)

 Y = ttk.Button(key,text = 'Y' , width = 6, command = lambda : press('Y'))
 Y.grid(row = 1 , column = 5, ipadx = 6 , ipady = 10)

1/3/22, 11:51 PM tmpauspnjrt.html

file:///C:/Users/music/AppData/Local/Temp/tmpauspnjrt.html 3/27

 U = ttk.Button(key,text = 'U' , width = 6, command = lambda : press('U'))
 U.grid(row = 1 , column = 6, ipadx = 6 , ipady = 10)

 I = ttk.Button(key,text = 'I' , width = 6, command = lambda : press('I'))
 I.grid(row = 1 , column = 7, ipadx = 6 , ipady = 10)

 O = ttk.Button(key,text = 'O' , width = 6, command = lambda : press('O'))
 O.grid(row = 1 , column = 8, ipadx = 6 , ipady = 10)

 P = ttk.Button(key,text = 'P' , width = 6, command = lambda : press('P'))
 P.grid(row = 1 , column = 9, ipadx = 6 , ipady = 10)

 hyphn = ttk.Button(key,text = '-' , width = 6, command = lambda : press('-'))
 hyphn.grid(row = 1 , column = 10, ipadx = 6 , ipady = 10)

 clear = ttk.Button(key,text = 'Clear' , width = 6, command = clear)
 clear.grid(row = 1 , column = 13, ipadx = 20 , ipady = 10)

 # Second Line Button
 A = ttk.Button(key,text = 'A' , width = 6, command = lambda : press('A'))
 A.grid(row = 2 , column = 0, ipadx = 6 , ipady = 10)

 S = ttk.Button(key,text = 'S' , width = 6, command = lambda : press('S'))
 S.grid(row = 2 , column = 1, ipadx = 6 , ipady = 10)

 D = ttk.Button(key,text = 'D' , width = 6, command = lambda : press('D'))
 D.grid(row = 2 , column = 2, ipadx = 6 , ipady = 10)

 F = ttk.Button(key,text = 'F' , width = 6, command = lambda : press('F'))
 F.grid(row = 2 , column = 3, ipadx = 6 , ipady = 10)

 G = ttk.Button(key,text = 'G' , width = 6, command = lambda : press('G'))
 G.grid(row = 2 , column = 4, ipadx = 6 , ipady = 10)

 H = ttk.Button(key,text = 'H' , width = 6, command = lambda : press('H'))
 H.grid(row = 2 , column = 5, ipadx = 6 , ipady = 10)

 J = ttk.Button(key,text = 'J' , width = 6, command = lambda : press('J'))
 J.grid(row = 2 , column = 6, ipadx = 6 , ipady = 10)

 K = ttk.Button(key,text = 'K' , width = 6, command = lambda : press('K'))
 K.grid(row = 2 , column = 7, ipadx = 6 , ipady = 10)

 L = ttk.Button(key,text = 'L' , width = 6, command = lambda : press('L'))
 L.grid(row = 2 , column = 8, ipadx = 6 , ipady = 10)

 enter = ttk.Button(key,text = 'Enter' , width = 6, command = action)
 enter.grid(row = 2 , column = 8, columnspan = 10, rowspan= 1, ipadx = 16 , ipady = 16)

 # third line Button
 Z = ttk.Button(key,text = 'Z' , width = 6, command = lambda : press('Z'))
 Z.grid(row = 3 , column = 0, ipadx = 6 , ipady = 10)

 X = ttk.Button(key,text = 'X' , width = 6, command = lambda : press('X'))
 X.grid(row = 3 , column = 1, ipadx = 6 , ipady = 10)

 C = ttk.Button(key,text = 'C' , width = 6, command = lambda : press('C'))
 C.grid(row = 3 , column = 2, ipadx = 6 , ipady = 10)

 V = ttk.Button(key,text = 'V' , width = 6, command = lambda : press('V'))
 V.grid(row = 3 , column = 3, ipadx = 6 , ipady = 10)

 B = ttk.Button(key, text= 'B' , width = 6 , command = lambda : press('B'))
 B.grid(row = 3 , column = 4 , ipadx = 6 ,ipady = 10)

 N = ttk.Button(key,text = 'N' , width = 6, command = lambda : press('N'))
 N.grid(row = 3 , column = 5, ipadx = 6 , ipady = 10)

 M = ttk.Button(key,text = 'M' , width = 6, command = lambda : press('M'))
 M.grid(row = 3 , column = 6, ipadx = 6 , ipady = 10)

 #Fourth Line Button
 space = ttk.Button(key,text = 'Space' , width = 6, command = lambda : press(' '))
 space.grid(row = 4 , columnspan = 14 , ipadx = 160 , ipady = 10)

1/3/22, 11:51 PM tmpauspnjrt.html

file:///C:/Users/music/AppData/Local/Temp/tmpauspnjrt.html 4/27

 #key.mainloop() # using ending point
 '''

 #clock on the home screen
 def clock():
 hour=time.strftime("%I")
 minute=time.strftime("%M")
 second=time.strftime("%S")
 day=time.strftime("%A")
 am_pm=time.strftime("%p")
 timezone=time.strftime("%Z")

 day_label.config(text=day)
 time_label.config(text=hour+":"+minute+":"+second+" "+am_pm)
 time_label.after(1000,clock)
 zone_label.config(text=timezone)

 #setup of pills in the containers
 def settings_window():
 settings=Tk()
 settings.geometry("800x480")
 settings.overrideredirect(True)
 settings.configure(bg="#043b82")

 settings_label=Label(settings,text="Container Setup",font=("Helvetica","22","bold"),fg="white",bg="#043b82")
 settings_label.pack(pady=10)

 def save_settings():
 #getting the settings data for the 'info' table
 insert_name="INSERT INTO info(p1_name,p2_name,p3_name,p4_name,p5_name,\
 p1_total_amount,p2_total_amount,p3_total_amount,p4_total_amount,p5_total_amount)\
 VALUES(%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)"
 data=(p1_name_entry.get(),p2_name_entry.get(),p3_name_entry.get(),p4_name_entry.get(),p5_name_entry.get(),\
 p1_amount_entry.get(),p2_amount_entry.get(),p3_amount_entry.get(),p4_amount_entry.get(),p5_amount_entry.get())

 #entering the settings data into the 'info' table
 my_cursor_local_info.execute(insert_name,data)

 #committing changes to the 'local_info' database
 mydb_local_info.commit()

 #labels so the user knows what to input in the settings
 setInfo_frame=LabelFrame(settings,borderwidth=0,bg="#043b82")
 setInfo_frame.pack(side=TOP,fill=BOTH,expand=True)

 p1_name_label=Label(setInfo_frame,text="Enter the name of the pills you have placed in container 1",\
 font=("Helvetica","12","bold"),fg="white",bg="#043b82")
 p1_name_label.place(anchor=NW,relx=0.07,rely=0.07)

 p1_amount_label=Label(setInfo_frame,text="Enter the number of pills in the container",\
 font=("Helvetica","12","bold"),fg="white",bg="#043b82")
 p1_amount_label.place(anchor=NW,relx=0.07,rely=0.13)

 p2_name_label=Label(setInfo_frame,text="Enter the name of the pills you have placed in container 2",\
 font=("Helvetica","12","bold"),fg="white",bg="#043b82")
 p2_name_label.place(anchor=NW,relx=0.07,rely=0.25)

 p2_amount_label=Label(setInfo_frame,text="Enter the number of pills in the container",\
 font=("Helvetica","12","bold"),fg="white",bg="#043b82")
 p2_amount_label.place(anchor=NW,relx=0.07,rely=0.31)

 p3_name_label=Label(setInfo_frame,text="Enter the name of the pills you have placed in container 3",\
 font=("Helvetica","12","bold"),fg="white",bg="#043b82")
 p3_name_label.place(anchor=NW,relx=0.07,rely=0.43)

 p3_amount_label=Label(setInfo_frame,text="Enter the number of pills in the container",\
 font=("Helvetica","12","bold"),fg="white",bg="#043b82")
 p3_amount_label.place(anchor=NW,relx=0.07,rely=0.49)

 p4_name_label=Label(setInfo_frame,text="Enter the name of the pills you have placed in container 4",\
 font=("Helvetica","12","bold"),fg="white",bg="#043b82")
 p4_name_label.place(anchor=NW,relx=0.07,rely=0.61)

 p4_amount_label=Label(setInfo_frame,text="Enter the number of pills in the container",\
 font=("Helvetica","12","bold"),fg="white",bg="#043b82")
 p4_amount_label.place(anchor=NW,relx=0.07,rely=0.67)

1/3/22, 11:51 PM tmpauspnjrt.html

file:///C:/Users/music/AppData/Local/Temp/tmpauspnjrt.html 5/27

 p5_name_label=Label(setInfo_frame,text="Enter the name of the pills you have placed in container 5",\
 font=("Helvetica","12","bold"),fg="white",bg="#043b82")
 p5_name_label.place(anchor=NW,relx=0.07,rely=0.79)

 p5_amount_label=Label(setInfo_frame,text="Enter the number of pills in the container",\
 font=("Helvetica","12","bold"),fg="white",bg="#043b82")
 p5_amount_label.place(anchor=NW,relx=0.07,rely=0.85)

 #entry boxes for the user to input the pill names and amounts
 p1_name_entry=Entry(setInfo_frame,borderwidth=0,width=30,font=("Helvetica","10","bold"),fg="#043b82",bg="white")
 p1_name_entry.place(anchor=NE,relx=0.92,rely=0.08)

 p1_amount_entry=Entry(setInfo_frame,borderwidth=0,width=30,font=("Helvetica","10","bold"),fg="#043b82",bg="white")
 p1_amount_entry.place(anchor=NE,relx=0.92,rely=0.14)

 p2_name_entry=Entry(setInfo_frame,borderwidth=0,width=30,font=("Helvetica","10","bold"),fg="#043b82",bg="white")
 p2_name_entry.place(anchor=NE,relx=0.92,rely=0.26)

 p2_amount_entry=Entry(setInfo_frame,borderwidth=0,width=30,font=("Helvetica","10","bold"),fg="#043b82",bg="white")
 p2_amount_entry.place(anchor=NE,relx=0.92,rely=0.32)

 p3_name_entry=Entry(setInfo_frame,borderwidth=0,width=30,font=("Helvetica","10","bold"),fg="#043b82",bg="white")
 p3_name_entry.place(anchor=NE,relx=0.92,rely=0.44)

 p3_amount_entry=Entry(setInfo_frame,borderwidth=0,width=30,font=("Helvetica","10","bold"),fg="#043b82",bg="white")
 p3_amount_entry.place(anchor=NE,relx=0.92,rely=0.50)

 p4_name_entry=Entry(setInfo_frame,borderwidth=0,width=30,font=("Helvetica","10","bold"),fg="#043b82",bg="white")
 p4_name_entry.place(anchor=NE,relx=0.92,rely=0.62)

 p4_amount_entry=Entry(setInfo_frame,borderwidth=0,width=30,font=("Helvetica","10","bold"),fg="#043b82",bg="white")
 p4_amount_entry.place(anchor=NE,relx=0.92,rely=0.68)

 p5_name_entry=Entry(setInfo_frame,borderwidth=0,width=30,font=("Helvetica","10","bold"),fg="#043b82",bg="white")
 p5_name_entry.place(anchor=NE,relx=0.92,rely=0.80)

 p5_amount_entry=Entry(setInfo_frame,borderwidth=0,width=30,font=("Helvetica","10","bold"),fg="#043b82",bg="white")
 p5_amount_entry.place(anchor=NE,relx=0.92,rely=0.86)

 #button to save the data given in this (settings) window
 setBtn_frame=LabelFrame(settings,borderwidth=0,bg="#043b82")
 setBtn_frame.pack(side=BOTTOM,fill=X,padx=60,pady=20)

 save_button=Button(setBtn_frame,text="Save information",command=lambda:[save_settings(),settings.destroy()],\
 font=("Helvetica","10","bold italic"),fg="#043b82",bg="white",activeforeground="white",activebackground="#00a047")
 save_button.pack(fill=X,expand=True)

 def enter_info_window():
 top=Tk()
 top.geometry("800x480")
 top.overrideredirect(True)
 top.configure(bg="#043b82")

 #1st window when clicking on "Create User" that is used to set up times to take pills
 timeSetup_label=Label(top,text="When should the pills be taken?",font=("Helvetica","22","bold"),fg="white",bg="#043b82
 timeSetup_label.pack()

 #retrieving most recent data from 'info' table
 my_cursor_local_info.execute("SELECT * FROM info ORDER BY user_id_local DESC LIMIT 1")
 most_local_info=my_cursor_local_info.fetchall()

 TS_frame=LabelFrame(top,borderwidth=0,bg="#043b82")
 TS_frame.pack(side=TOP,fill=X,padx=30)

 TSpill_frame=LabelFrame(TS_frame,borderwidth=0,bg="#043b82")
 TSpill_frame.pack(side=LEFT,fill=X,expand=True,padx=10)

 pills_label=Label(TSpill_frame,text="Available Pills",font=("Helvetica","16","bold"),fg="white",bg="#043b82")
 pills_label.pack(side=TOP,fill=X,expand=True,pady=1)

 p1TS_name=Label(TSpill_frame,text=str(most_local_info[0][0]),font=("Helvetica","16","italic"),fg="white",bg="#043b82")
 p1TS_name.pack(pady=1)

 p2TS_name=Label(TSpill_frame,text=str(most_local_info[0][1]),font=("Helvetica","16","italic"),fg="white",bg="#043b82")
 p2TS_name.pack(pady=1)

1/3/22, 11:51 PM tmpauspnjrt.html

file:///C:/Users/music/AppData/Local/Temp/tmpauspnjrt.html 6/27

 p3TS_name=Label(TSpill_frame,text=str(most_local_info[0][2]),font=("Helvetica","16","italic"),fg="white",bg="#043b82")
 p3TS_name.pack(pady=1)

 p4TS_name=Label(TSpill_frame,text=str(most_local_info[0][3]),font=("Helvetica","16","italic"),fg="white",bg="#043b82")
 p4TS_name.pack(pady=1)

 p5TS_name=Label(TSpill_frame,text=str(most_local_info[0][4]),font=("Helvetica","16","italic"),fg="white",bg="#043b82")
 p5TS_name.pack(pady=1)

 #lists for the drop down menus
 time_hour_list=["00","01","02","03","04","05","06","07","08","09","10","11","12"]
 time_minute_list=["00","15","30","45"]
 time_ampm_list=["AM","PM"]

 #variables for the drop down menus
 #setting up variables for the morning hours
 p1_morning_hour=StringVar(top)
 p1_morning_hour.set(time_hour_list[0])

 p2_morning_hour=StringVar(top)
 p2_morning_hour.set(time_hour_list[0])

 p3_morning_hour=StringVar(top)
 p3_morning_hour.set(time_hour_list[0])

 p4_morning_hour=StringVar(top)
 p4_morning_hour.set(time_hour_list[0])

 p5_morning_hour=StringVar(top)
 p5_morning_hour.set(time_hour_list[0])

 #setting up variables for the afternoon hours
 p1_afternoon_hour=StringVar(top)
 p1_afternoon_hour.set(time_hour_list[0])

 p2_afternoon_hour=StringVar(top)
 p2_afternoon_hour.set(time_hour_list[0])

 p3_afternoon_hour=StringVar(top)
 p3_afternoon_hour.set(time_hour_list[0])

 p4_afternoon_hour=StringVar(top)
 p4_afternoon_hour.set(time_hour_list[0])

 p5_afternoon_hour=StringVar(top)
 p5_afternoon_hour.set(time_hour_list[0])

 #setting up variables for the evening hours
 p1_evening_hour=StringVar(top)
 p1_evening_hour.set(time_hour_list[0])

 p2_evening_hour=StringVar(top)
 p2_evening_hour.set(time_hour_list[0])

 p3_evening_hour=StringVar(top)
 p3_evening_hour.set(time_hour_list[0])

 p4_evening_hour=StringVar(top)
 p4_evening_hour.set(time_hour_list[0])

 p5_evening_hour=StringVar(top)
 p5_evening_hour.set(time_hour_list[0])

 #setting up variables for the morning minutes
 p1_morning_minute=StringVar(top)
 p1_morning_minute.set(time_minute_list[0])

 p2_morning_minute=StringVar(top)
 p2_morning_minute.set(time_minute_list[0])

 p3_morning_minute=StringVar(top)
 p3_morning_minute.set(time_minute_list[0])

 p4_morning_minute=StringVar(top)
 p4_morning_minute.set(time_minute_list[0])

1/3/22, 11:51 PM tmpauspnjrt.html

file:///C:/Users/music/AppData/Local/Temp/tmpauspnjrt.html 7/27

 p5_morning_minute=StringVar(top)
 p5_morning_minute.set(time_minute_list[0])

 #setting up variables for the afternoon minutes
 p1_afternoon_minute=StringVar(top)
 p1_afternoon_minute.set(time_minute_list[0])

 p2_afternoon_minute=StringVar(top)
 p2_afternoon_minute.set(time_minute_list[0])

 p3_afternoon_minute=StringVar(top)
 p3_afternoon_minute.set(time_minute_list[0])

 p4_afternoon_minute=StringVar(top)
 p4_afternoon_minute.set(time_minute_list[0])

 p5_afternoon_minute=StringVar(top)
 p5_afternoon_minute.set(time_minute_list[0])

 #setting up variables for the evening minutes
 p1_evening_minute=StringVar(top)
 p1_evening_minute.set(time_minute_list[0])

 p2_evening_minute=StringVar(top)
 p2_evening_minute.set(time_minute_list[0])

 p3_evening_minute=StringVar(top)
 p3_evening_minute.set(time_minute_list[0])

 p4_evening_minute=StringVar(top)
 p4_evening_minute.set(time_minute_list[0])

 p5_evening_minute=StringVar(top)
 p5_evening_minute.set(time_minute_list[0])

 #setting up AM/PM variables for the morning
 p1_morning_ampm=StringVar(top)
 p1_morning_ampm.set(time_ampm_list[0])

 p2_morning_ampm=StringVar(top)
 p2_morning_ampm.set(time_ampm_list[0])

 p3_morning_ampm=StringVar(top)
 p3_morning_ampm.set(time_ampm_list[0])

 p4_morning_ampm=StringVar(top)
 p4_morning_ampm.set(time_ampm_list[0])

 p5_morning_ampm=StringVar(top)
 p5_morning_ampm.set(time_ampm_list[0])

 #setting up AM/PM variables for the afternoon
 p1_afternoon_ampm=StringVar(top)
 p1_afternoon_ampm.set(time_ampm_list[0])

 p2_afternoon_ampm=StringVar(top)
 p2_afternoon_ampm.set(time_ampm_list[0])

 p3_afternoon_ampm=StringVar(top)
 p3_afternoon_ampm.set(time_ampm_list[0])

 p4_afternoon_ampm=StringVar(top)
 p4_afternoon_ampm.set(time_ampm_list[0])

 p5_afternoon_ampm=StringVar(top)
 p5_afternoon_ampm.set(time_ampm_list[0])

 #setting up AM/PM variables for the evening
 p1_evening_ampm=StringVar(top)
 p1_evening_ampm.set(time_ampm_list[0])

 p2_evening_ampm=StringVar(top)
 p2_evening_ampm.set(time_ampm_list[0])

 p3_evening_ampm=StringVar(top)
 p3_evening_ampm.set(time_ampm_list[0])

1/3/22, 11:51 PM tmpauspnjrt.html

file:///C:/Users/music/AppData/Local/Temp/tmpauspnjrt.html 8/27

 p4_evening_ampm=StringVar(top)
 p4_evening_ampm.set(time_ampm_list[0])

 p5_evening_ampm=StringVar(top)
 p5_evening_ampm.set(time_ampm_list[0])

 #placing the morning section in the window
 TSmorning_frame=LabelFrame(TS_frame,borderwidth=0,bg="#043b82")
 TSmorning_frame.pack(side=LEFT,padx=10)

 morning_time_label=Label(TSmorning_frame,text="Morning",font=("Helvetica","16","bold"),fg="white",bg="#043b82")
 morning_time_label.pack(side=TOP,fill=X)

 #placing the morning hour column in the morning section
 morHOUR_frame=LabelFrame(TSmorning_frame,borderwidth=0,bg="#043b82")
 morHOUR_frame.pack(side=LEFT)

 #creating and placing drop down menus for the morning hours
 p1_morning_hour_ddm=OptionMenu(morHOUR_frame,p1_morning_hour,*time_hour_list)
 p1_morning_hour_ddm.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p1_morning_hour_ddm["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p1_morning_hour_ddm.pack()

 p2_morning_hour_ddm=OptionMenu(morHOUR_frame,p2_morning_hour,*time_hour_list)
 p2_morning_hour_ddm.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p2_morning_hour_ddm["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p2_morning_hour_ddm.pack()

 p3_morning_hour_ddm=OptionMenu(morHOUR_frame,p3_morning_hour,*time_hour_list)
 p3_morning_hour_ddm.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p3_morning_hour_ddm["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p3_morning_hour_ddm.pack()

 p4_morning_hour_ddm=OptionMenu(morHOUR_frame,p4_morning_hour,*time_hour_list)
 p4_morning_hour_ddm.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p4_morning_hour_ddm["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p4_morning_hour_ddm.pack()

 p5_morning_hour_ddm=OptionMenu(morHOUR_frame,p5_morning_hour,*time_hour_list)
 p5_morning_hour_ddm.config(width=1, bg="white", fg="#043b82", font=("Helvetica", "12", "bold"), borderwidth=0)
 p5_morning_hour_ddm["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p5_morning_hour_ddm.pack()

 #placing the morning minutes column in the morning section
 morMIN_frame=LabelFrame(TSmorning_frame,borderwidth=0,bg="#043b82")
 morMIN_frame.pack(side=LEFT)

 #creating and placing drop down menus for the morning minutes
 p1_morning_minute_ddm=OptionMenu(morMIN_frame,p1_morning_minute,*time_minute_list)
 p1_morning_minute_ddm.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p1_morning_minute_ddm["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p1_morning_minute_ddm.pack()

 p2_morning_minute_ddm=OptionMenu(morMIN_frame,p2_morning_minute,*time_minute_list)
 p2_morning_minute_ddm.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p2_morning_minute_ddm["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p2_morning_minute_ddm.pack()

 p3_morning_minute_ddm=OptionMenu(morMIN_frame,p3_morning_minute,*time_minute_list)
 p3_morning_minute_ddm.config(width=1, bg="white", fg="#043b82", font=("Helvetica", "12", "bold"), borderwidth=0)
 p3_morning_minute_ddm["menu"].config(bg="white", fg="#043b82", font=("Helvetica", "9", "bold"), borderwidth=0)
 p3_morning_minute_ddm.pack()

 p4_morning_minute_ddm=OptionMenu(morMIN_frame,p4_morning_minute,*time_minute_list)
 p4_morning_minute_ddm.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p4_morning_minute_ddm["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p4_morning_minute_ddm.pack()

 p5_morning_minute_ddm=OptionMenu(morMIN_frame,p5_morning_minute,*time_minute_list)

1/3/22, 11:51 PM tmpauspnjrt.html

file:///C:/Users/music/AppData/Local/Temp/tmpauspnjrt.html 9/27

 p5_morning_minute_ddm.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p5_morning_minute_ddm["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p5_morning_minute_ddm.pack()

 #placing the morning AM/PM column in the morning section
 morAMPM_frame=LabelFrame(TSmorning_frame,borderwidth=0,bg="#043b82")
 morAMPM_frame.pack(side=LEFT)

 #creating and placing drop down menus for AM/PM in the morning section
 p1_morning_ampm_ddm=OptionMenu(morAMPM_frame,p1_morning_ampm,*time_ampm_list)
 p1_morning_ampm_ddm.config(borderwidth=0,width=2,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p1_morning_ampm_ddm["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p1_morning_ampm_ddm.pack()

 p2_morning_ampm_ddm=OptionMenu(morAMPM_frame,p2_morning_ampm,*time_ampm_list)
 p2_morning_ampm_ddm.config(borderwidth=0,width=2,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p2_morning_ampm_ddm["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p2_morning_ampm_ddm.pack()

 p3_morning_ampm_ddm=OptionMenu(morAMPM_frame,p3_morning_ampm,*time_ampm_list)
 p3_morning_ampm_ddm.config(borderwidth=0,width=2,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p3_morning_ampm_ddm["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p3_morning_ampm_ddm.pack()

 p4_morning_ampm_ddm=OptionMenu(morAMPM_frame,p4_morning_ampm,*time_ampm_list)
 p4_morning_ampm_ddm.config(borderwidth=0,width=2,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p4_morning_ampm_ddm["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p4_morning_ampm_ddm.pack()

 p5_morning_ampm_ddm=OptionMenu(morAMPM_frame,p5_morning_ampm,*time_ampm_list)
 p5_morning_ampm_ddm.config(borderwidth=0,width=2,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p5_morning_ampm_ddm["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p5_morning_ampm_ddm.pack()

 #placing the afternoon section in the window
 TSafternoon_frame=LabelFrame(TS_frame,borderwidth=0,bg="#043b82")
 TSafternoon_frame.pack(side=LEFT,padx=10)

 afternoon_time_label=Label(TSafternoon_frame,text="Afternoon",font=("Helvetica","16","bold"),fg="white",bg="#043b82")
 afternoon_time_label.pack(side=TOP,fill=X)

 #placing the afternoon hour column in the afternoon section
 noonHOUR_frame=LabelFrame(TSafternoon_frame,borderwidth=0,bg="#043b82")
 noonHOUR_frame.pack(side=LEFT)

 #creating and placing drop down menus for the afternoon hours
 p1_afternoon_hour_ddm=OptionMenu(noonHOUR_frame,p1_afternoon_hour,*time_hour_list)
 p1_afternoon_hour_ddm.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p1_afternoon_hour_ddm["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p1_afternoon_hour_ddm.pack()

 p2_afternoon_hour_ddm=OptionMenu(noonHOUR_frame,p2_afternoon_hour,*time_hour_list)
 p2_afternoon_hour_ddm.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p2_afternoon_hour_ddm["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p2_afternoon_hour_ddm.pack()

 p3_afternoon_hour_ddm=OptionMenu(noonHOUR_frame,p3_afternoon_hour,*time_hour_list)
 p3_afternoon_hour_ddm.config(width=1, bg="white", fg="#043b82", font=("Helvetica", "12", "bold"), borderwidth=0)
 p3_afternoon_hour_ddm["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p3_afternoon_hour_ddm.pack()

 p4_afternoon_hour_ddm=OptionMenu(noonHOUR_frame,p4_afternoon_hour,*time_hour_list)
 p4_afternoon_hour_ddm.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p4_afternoon_hour_ddm["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p4_afternoon_hour_ddm.pack()

 p5_afternoon_hour_ddm=OptionMenu(noonHOUR_frame,p5_afternoon_hour,*time_hour_list)

1/3/22, 11:51 PM tmpauspnjrt.html

file:///C:/Users/music/AppData/Local/Temp/tmpauspnjrt.html 10/27

 p5_afternoon_hour_ddm.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p5_afternoon_hour_ddm["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p5_afternoon_hour_ddm.pack()

 #placing the afternoon minutes column in the afternoon section
 noonMIN_frame=LabelFrame(TSafternoon_frame,borderwidth=0,bg="#043b82")
 noonMIN_frame.pack(side=LEFT)

 #creating and placing drop down menus for the afternoon minutes
 p1_afternoon_minute_ddm=OptionMenu(noonMIN_frame,p1_afternoon_minute,*time_minute_list)
 p1_afternoon_minute_ddm.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p1_afternoon_minute_ddm["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p1_afternoon_minute_ddm.pack()

 p2_afternoon_minute_ddm=OptionMenu(noonMIN_frame,p2_afternoon_minute,*time_minute_list)
 p2_afternoon_minute_ddm.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p2_afternoon_minute_ddm["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p2_afternoon_minute_ddm.pack()

 p3_afternoon_minute_ddm=OptionMenu(noonMIN_frame,p3_afternoon_minute,*time_minute_list)
 p3_afternoon_minute_ddm.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p3_afternoon_minute_ddm["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p3_afternoon_minute_ddm.pack()

 p4_afternoon_minute_ddm=OptionMenu(noonMIN_frame,p4_afternoon_minute,*time_minute_list)
 p4_afternoon_minute_ddm.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p4_afternoon_minute_ddm["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p4_afternoon_minute_ddm.pack()

 p5_afternoon_minute_ddm=OptionMenu(noonMIN_frame,p5_afternoon_minute,*time_minute_list)
 p5_afternoon_minute_ddm.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p5_afternoon_minute_ddm["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p5_afternoon_minute_ddm.pack()

 #placing the morning AM/PM column in the afternoon section
 noonAMPM_frame=LabelFrame(TSafternoon_frame,borderwidth=0,bg="#043b82")
 noonAMPM_frame.pack(side=LEFT)

 #creating and placing drop down menus for AM/PM in the afternoon section
 p1_afternoon_ampm_ddm=OptionMenu(noonAMPM_frame,p1_afternoon_ampm,*time_ampm_list)
 p1_afternoon_ampm_ddm.config(borderwidth=0,width=2,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p1_afternoon_ampm_ddm["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p1_afternoon_ampm_ddm.pack()

 p2_afternoon_ampm_ddm=OptionMenu(noonAMPM_frame,p2_afternoon_ampm,*time_ampm_list)
 p2_afternoon_ampm_ddm.config(borderwidth=0,width=2,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p2_afternoon_ampm_ddm["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p2_afternoon_ampm_ddm.pack()

 p3_afternoon_ampm_ddm=OptionMenu(noonAMPM_frame,p3_afternoon_ampm,*time_ampm_list)
 p3_afternoon_ampm_ddm.config(borderwidth=0,width=2,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p3_afternoon_ampm_ddm["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p3_afternoon_ampm_ddm.pack()

 p4_afternoon_ampm_ddm=OptionMenu(noonAMPM_frame,p4_afternoon_ampm,*time_ampm_list)
 p4_afternoon_ampm_ddm.config(borderwidth=0,width=2,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p4_afternoon_ampm_ddm["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p4_afternoon_ampm_ddm.pack()

 p5_afternoon_ampm_ddm=OptionMenu(noonAMPM_frame,p5_afternoon_ampm,*time_ampm_list)
 p5_afternoon_ampm_ddm.config(borderwidth=0,width=2,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p5_afternoon_ampm_ddm["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p5_afternoon_ampm_ddm.pack()

 #placing the evening section in the evening section
 TSevening_frame=LabelFrame(TS_frame,borderwidth=0,bg="#043b82")

1/3/22, 11:51 PM tmpauspnjrt.html

file:///C:/Users/music/AppData/Local/Temp/tmpauspnjrt.html 11/27

 TSevening_frame.pack(side=LEFT,padx=10)

 evening_time_label=Label(TSevening_frame,text="Evening",font=("Helvetica","16","bold"),fg="white",bg="#043b82")
 evening_time_label.pack(side=TOP,fill=X)

 #placing the evening hour column in the window
 eveHOUR_frame=LabelFrame(TSevening_frame,borderwidth=0,bg="#043b82")
 eveHOUR_frame.pack(side=LEFT)

 #creating and placing drop down menus for the evening hours
 p1_evening_hour_ddm=OptionMenu(eveHOUR_frame,p1_evening_hour,*time_hour_list)
 p1_evening_hour_ddm.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p1_evening_hour_ddm["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p1_evening_hour_ddm.pack()

 p2_evening_hour_ddm=OptionMenu(eveHOUR_frame,p2_evening_hour,*time_hour_list)
 p2_evening_hour_ddm.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p2_evening_hour_ddm["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p2_evening_hour_ddm.pack()

 p3_evening_hour_ddm=OptionMenu(eveHOUR_frame,p3_evening_hour,*time_hour_list)
 p3_evening_hour_ddm.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p3_evening_hour_ddm["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p3_evening_hour_ddm.pack()

 p4_evening_hour_ddm=OptionMenu(eveHOUR_frame,p4_evening_hour,*time_hour_list)
 p4_evening_hour_ddm.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p4_evening_hour_ddm["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p4_evening_hour_ddm.pack()

 p5_evening_hour_ddm=OptionMenu(eveHOUR_frame,p5_evening_hour,*time_hour_list)
 p5_evening_hour_ddm.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p5_evening_hour_ddm["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p5_evening_hour_ddm.pack()

 #placing the evening minutes column in the evening section
 eveMIN_frame=LabelFrame(TSevening_frame,borderwidth=0,bg="#043b82")
 eveMIN_frame.pack(side=LEFT)

 #creating and placing drop down menus for the evening minutes
 p1_evening_minute_ddm=OptionMenu(eveMIN_frame,p1_evening_minute,*time_minute_list)
 p1_evening_minute_ddm.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p1_evening_minute_ddm["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p1_evening_minute_ddm.pack()

 p2_evening_minute_ddm=OptionMenu(eveMIN_frame,p2_evening_minute,*time_minute_list)
 p2_evening_minute_ddm.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p2_evening_minute_ddm["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p2_evening_minute_ddm.pack()

 p3_evening_minute_ddm=OptionMenu(eveMIN_frame,p3_evening_minute,*time_minute_list)
 p3_evening_minute_ddm.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p3_evening_minute_ddm["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p3_evening_minute_ddm.pack()

 p4_evening_minute_ddm=OptionMenu(eveMIN_frame,p4_evening_minute,*time_minute_list)
 p4_evening_minute_ddm.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p4_evening_minute_ddm["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p4_evening_minute_ddm.pack()

 p5_evening_minute_ddm=OptionMenu(eveMIN_frame,p5_evening_minute,*time_minute_list)
 p5_evening_minute_ddm.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p5_evening_minute_ddm["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p5_evening_minute_ddm.pack()

 #placing the evening AM/PM column in the evening section
 eveAMPM_frame=LabelFrame(TSevening_frame,borderwidth=0,bg="#043b82")

1/3/22, 11:51 PM tmpauspnjrt.html

file:///C:/Users/music/AppData/Local/Temp/tmpauspnjrt.html 12/27

 eveAMPM_frame.pack(side=LEFT)

 #creating and placing drop down menus for AM/PM in the evening section
 p1_evening_ampm_ddm=OptionMenu(eveAMPM_frame,p1_evening_ampm,*time_ampm_list)
 p1_evening_ampm_ddm.config(borderwidth=0,width=2,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p1_evening_ampm_ddm["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p1_evening_ampm_ddm.pack()

 p2_evening_ampm_ddm=OptionMenu(eveAMPM_frame,p2_evening_ampm,*time_ampm_list)
 p2_evening_ampm_ddm.config(borderwidth=0,width=2,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p2_evening_ampm_ddm["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p2_evening_ampm_ddm.pack()

 p3_evening_ampm_ddm=OptionMenu(eveAMPM_frame,p3_evening_ampm,*time_ampm_list)
 p3_evening_ampm_ddm.config(borderwidth=0,width=2,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p3_evening_ampm_ddm["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p3_evening_ampm_ddm.pack()

 p4_evening_ampm_ddm=OptionMenu(eveAMPM_frame,p4_evening_ampm,*time_ampm_list)
 p4_evening_ampm_ddm.config(borderwidth=0,width=2,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p4_evening_ampm_ddm["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p4_evening_ampm_ddm.pack()

 p5_evening_ampm_ddm=OptionMenu(eveAMPM_frame,p5_evening_ampm,*time_ampm_list)
 p5_evening_ampm_ddm.config(borderwidth=0,width=2,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p5_evening_ampm_ddm["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p5_evening_ampm_ddm.pack()

 #submitting user information to database
 def submit_local():
 #retrieving most recent data from 'info' table
 my_cursor_local_info.execute("SELECT * FROM info ORDER BY user_id_local DESC LIMIT 1")
 local_recent_update_info=my_cursor_local_info.fetchall()
 #print(local_recent_update_info)

 p1_morning_time_insert=p1_morning_hour.get()+"."+p1_morning_minute.get()+"."+p1_morning_ampm.get()
 p1_afternoon_time_insert=p1_afternoon_hour.get()+"."+p1_afternoon_minute.get()+"."+p1_afternoon_ampm.get()
 p1_evening_time_insert=p1_evening_hour.get()+"."+p1_evening_minute.get()+"."+p1_evening_ampm.get()

 p2_morning_time_insert=p2_morning_hour.get()+"."+p2_morning_minute.get()+"."+p2_morning_ampm.get()
 p2_afternoon_time_insert=p2_afternoon_hour.get()+"."+p2_afternoon_minute.get()+"."+p2_afternoon_ampm.get()
 p2_evening_time_insert=p2_evening_hour.get()+"."+p2_evening_minute.get()+"."+p2_evening_ampm.get()

 p3_morning_time_insert=p3_morning_hour.get()+"."+p3_morning_minute.get()+"."+p3_morning_ampm.get()
 p3_afternoon_time_insert=p3_afternoon_hour.get()+"."+p3_afternoon_minute.get()+"."+p3_afternoon_ampm.get()
 p3_evening_time_insert=p3_evening_hour.get()+"."+p3_evening_minute.get()+"."+p3_evening_ampm.get()

 p4_morning_time_insert=p4_morning_hour.get()+"."+p4_morning_minute.get()+"."+p4_morning_ampm.get()
 p4_afternoon_time_insert=p4_afternoon_hour.get()+"."+p4_afternoon_minute.get()+"."+p4_afternoon_ampm.get()
 p4_evening_time_insert=p4_evening_hour.get()+"."+p4_evening_minute.get()+"."+p4_evening_ampm.get()

 p5_morning_time_insert=p5_morning_hour.get()+"."+p5_morning_minute.get()+"."+p5_morning_ampm.get()
 p5_afternoon_time_insert=p5_afternoon_hour.get()+"."+p5_afternoon_minute.get()+"."+p5_afternoon_ampm.get()
 p5_evening_time_insert=p5_evening_hour.get()+"."+p5_evening_minute.get()+"."+p5_evening_ampm.get()

 user_id_local=local_recent_update_info[0][25]

 #entering the data into the 'info' table
 local_info_submit="""UPDATE info SET \
 p1_morning_time=%s,p1_afternoon_time=%s,p1_evening_time=%s,\
 p2_morning_time=%s,p2_afternoon_time=%s,p2_evening_time=%s,\
 p3_morning_time=%s,p3_afternoon_time=%s,p3_evening_time=%s,\
 p4_morning_time=%s,p4_afternoon_time=%s,p4_evening_time=%s,\
 p5_morning_time=%s,p5_afternoon_time=%s,p5_evening_time=%s \
 WHERE user_id_local=%s"""

 local_values_submit=(p1_morning_time_insert,p1_afternoon_time_insert,p1_evening_time_insert,\
 p2_morning_time_insert,p2_afternoon_time_insert,p2_evening_time_insert,\
 p3_morning_time_insert,p3_afternoon_time_insert,p3_evening_time_insert,\
 p4_morning_time_insert,p4_afternoon_time_insert,p4_evening_time_insert,\
 p5_morning_time_insert,p5_afternoon_time_insert,p5_evening_time_insert,user_id_local)

1/3/22, 11:51 PM tmpauspnjrt.html

file:///C:/Users/music/AppData/Local/Temp/tmpauspnjrt.html 13/27

 #committing changes to the 'local_info' database
 my_cursor_local_info.execute(local_info_submit,local_values_submit)
 mydb_local_info.commit()

 #button to save information regarding when to take pills
 TSbtn_frame=LabelFrame(top,borderwidth=0,bg="#043b82")
 TSbtn_frame.pack(padx=40,pady=20,fill=BOTH,expand=True)

 next_window_button=Button(TSbtn_frame,text="Save information",\
 command=lambda:[create_new_user_window(),submit_local(),top.destroy()],\
 font=("Helvetica","10","bold italic"),fg="#043b82",bg="white",activeforeground="white",activebackground="#00a047")
 next_window_button.pack(side=BOTTOM,fill=X)

 def create_new_user_window():
 new_user=Tk()
 new_user.geometry("800x480")
 new_user.overrideredirect(True)
 new_user.configure(bg="#043b82")

 #function to calculate the total amount of pills
 def add_total_pill_amount(*args):
 p1_total=int(p1_morning_var.get())+int(p1_afternoon_var.get())+int(p1_evening_var.get())
 p2_total=int(p2_morning_var.get())+int(p2_afternoon_var.get())+int(p2_evening_var.get())
 p3_total=int(p3_morning_var.get())+int(p3_afternoon_var.get())+int(p3_evening_var.get())
 p4_total=int(p4_morning_var.get())+int(p4_afternoon_var.get())+int(p4_evening_var.get())
 p5_total=int(p5_morning_var.get())+int(p5_afternoon_var.get())+int(p5_evening_var.get())

 p1_total_label=Label(NUtotal_frame,text=str(p1_total),font=("Helvetica","12","bold"),fg="white",bg="#043b82")
 p1_total_label.place(anchor=N,relx=0.5,rely=0.17)

 p2_total_label=Label(NUtotal_frame,text=str(p2_total),font=("Helvetica","12","bold"),fg="white",bg="#043b82")
 p2_total_label.place(anchor=N,relx=0.5,rely=0.35)

 p3_total_label=Label(NUtotal_frame,text=str(p3_total),font=("Helvetica","12","bold"),fg="white",bg="#043b82")
 p3_total_label.place(anchor=N,relx=0.5,rely=0.52)

 p4_total_label=Label(NUtotal_frame,text=str(p4_total),font=("Helvetica","12","bold"),fg="white",bg="#043b82")
 p4_total_label.place(anchor=N,relx=0.5,rely=0.68)

 p5_total_label=Label(NUtotal_frame,text=str(p5_total),font=("Helvetica","12","bold"),fg="white",bg="#043b82")
 p5_total_label.place(anchor=N,relx=0.5,rely=0.86)

 #submitting user information to database
 def submit():
 check=StringVar()
 check=0
 #USE THIS TO GET THE MOST RECENT USER CREATED
 my_cursor.execute("SELECT * FROM users ORDER BY user_id ASC LIMIT 4")
 most_recent_user_check=my_cursor.fetchall()

 #doing math
 p1_total_insert=int(p1_morning_var.get())+int(p1_afternoon_var.get())+int(p1_evening_var.get())
 p2_total_insert=int(p2_morning_var.get())+int(p2_afternoon_var.get())+int(p2_evening_var.get())
 p3_total_insert=int(p3_morning_var.get())+int(p3_afternoon_var.get())+int(p3_evening_var.get())
 p4_total_insert=int(p4_morning_var.get())+int(p4_afternoon_var.get())+int(p4_evening_var.get())
 p5_total_insert=int(p5_morning_var.get())+int(p5_afternoon_var.get())+int(p5_evening_var.get())

 for x in range(1,4):
 if most_recent_user_check[x-1][0]=="Start_name":
 sql_command="""UPDATE users SET name_entry=%s,\
 p1_entry=%s,p2_entry=%s,p3_entry=%s,p4_entry=%s,p5_entry=%s,\
 p1_morning=%s,p1_afternoon=%s,p1_evening=%s,\
 p2_morning=%s,p2_afternoon=%s,p2_evening=%s,\
 p3_morning=%s,p3_afternoon=%s,p3_evening=%s,\
 p4_morning=%s,p4_afternoon=%s,p4_evening=%s,\
 p5_morning=%s,p5_afternoon=%s,p5_evening=%s WHERE user_id=%s"""

 values=(NUname_entry.get(),p1_total_insert,p2_total_insert,p3_total_insert,p4_total_insert,p5_total_in
 p1_morning_var.get(),p1_afternoon_var.get(),p1_evening_var.get(),\
 p2_morning_var.get(),p2_afternoon_var.get(),p2_evening_var.get(),\
 p3_morning_var.get(),p3_afternoon_var.get(),p3_evening_var.get(),\
 p4_morning_var.get(),p4_afternoon_var.get(),p4_evening_var.get(),\
 p5_morning_var.get(),p5_afternoon_var.get(),p5_evening_var.get(),x)

 my_cursor.execute(sql_command,values)

1/3/22, 11:51 PM tmpauspnjrt.html

file:///C:/Users/music/AppData/Local/Temp/tmpauspnjrt.html 14/27

 mydb_user_info.commit()
 check=1
 if check==1:
 break

 #new window to list users
 def list_users(name_list):
 list_users_query=Tk()
 list_users_query.geometry("800x480")
 list_users_query.overrideredirect(True)
 list_users_query.configure(bg="#043b82")

 list_name="SELECT * FROM users WHERE name_entry=%s"
 list_name_values=(name_list,)

 most_recent_user_show=my_cursor.execute(list_name,list_name_values)
 most_recent_user_show=my_cursor.fetchall()

 LQtitle_label=Label(list_users_query,text="Review user information",font=("Helvetica","22","bold"),fg="white",
 LQtitle_label.pack()

 LQuser_label=Label(list_users_query,text="User: "+str(most_recent_user_show[0][0]),\
 font=("Helvetica","16","bold"),fg="white",bg="#043b82")
 LQuser_label.pack(side=TOP,pady=30)

 LQ_frame=LabelFrame(list_users_query,borderwidth=0,bg="#043b82")
 LQ_frame.pack()

 #placing the pills column in the window
 LQpill_frame=LabelFrame(LQ_frame,borderwidth=0,bg="#043b82")
 LQpill_frame.pack(side=LEFT,padx=20)

 LQpill_label=Label(LQpill_frame,text="Pills",font=("Helvetica","16","bold"),fg="white",bg="#043b82")
 LQpill_label.pack(side=TOP,fill=X,expand=True,pady=10)

 p1LQ_label=Label(LQpill_frame,text=str(most_local_info[0][0]),font=("Helvetica","16","italic"),fg="white",bg="
 p1LQ_label.pack()

 p2LQ_label=Label(LQpill_frame,text=str(most_local_info[0][1]),font=("Helvetica","16","italic"),fg="white",bg="
 p2LQ_label.pack()

 p3LQ_label=Label(LQpill_frame,text=str(most_local_info[0][2]),font=("Helvetica","16","italic"),fg="white",bg="
 p3LQ_label.pack()

 p4LQ_label=Label(LQpill_frame,text=str(most_local_info[0][3]),font=("Helvetica","16","italic"),fg="white",bg="
 p4LQ_label.pack()

 p5LQ_label=Label(LQpill_frame,text=str(most_local_info[0][4]),font=("Helvetica","16","italic"),fg="white",bg="
 p5LQ_label.pack()

 #placing the morning column in the window
 LQmorn_frame=LabelFrame(LQ_frame,borderwidth=0,bg="#043b82")
 LQmorn_frame.pack(side=LEFT,padx=20)

 LQmorn_label=Label(LQmorn_frame,text="Morning",font=("Helvetica","16","bold"),fg="white",bg="#043b82")
 LQmorn_label.pack(side=TOP,fill=X,expand=True,pady=10)

 p1_LQmorn_label=Label(LQmorn_frame,text=str(most_recent_user_show[0][6]),font=("Helvetica","16","bold"),fg="wh
 p1_LQmorn_label.pack()

 p2_LQmorn_label=Label(LQmorn_frame,text=str(most_recent_user_show[0][9]),font=("Helvetica","16","bold"),fg="wh
 p2_LQmorn_label.pack()

 p3_LQmorn_label=Label(LQmorn_frame,text=str(most_recent_user_show[0][12]),font=("Helvetica","16","bold"),fg="w
 p3_LQmorn_label.pack()

 p4_LQmorn_label=Label(LQmorn_frame,text=str(most_recent_user_show[0][15]),font=("Helvetica","16","bold"),fg="w
 p4_LQmorn_label.pack()

 p5_LQmorn_label=Label(LQmorn_frame,text=str(most_recent_user_show[0][18]),font=("Helvetica","16","bold"),fg="w
 p5_LQmorn_label.pack()

 #placing the afternoon column in the window
 LQnoon_frame=LabelFrame(LQ_frame,borderwidth=0,bg="#043b82")
 LQnoon_frame.pack(side=LEFT,padx=20)

1/3/22, 11:51 PM tmpauspnjrt.html

file:///C:/Users/music/AppData/Local/Temp/tmpauspnjrt.html 15/27

 LQnoon_label=Label(LQnoon_frame,text="Afternoon",font=("Helvetica","16","bold"),fg="white",bg="#043b82")
 LQnoon_label.pack(side=TOP,fill=X,expand=True,pady=10)

 p1_LQnoon_label=Label(LQnoon_frame,text=str(most_recent_user_show[0][7]),font=("Helvetica","16","bold"),fg="wh
 p1_LQnoon_label.pack()

 p2_LQnoon_label=Label(LQnoon_frame,text=str(most_recent_user_show[0][10]),font=("Helvetica","16","bold"),fg="w
 p2_LQnoon_label.pack()

 p3_LQnoon_label=Label(LQnoon_frame,text=str(most_recent_user_show[0][13]),font=("Helvetica","16","bold"),fg="w
 p3_LQnoon_label.pack()

 p4_LQnoon_label=Label(LQnoon_frame,text=str(most_recent_user_show[0][16]),font=("Helvetica","16","bold"),fg="w
 p4_LQnoon_label.pack()

 p5_LQnoon_label=Label(LQnoon_frame,text=str(most_recent_user_show[0][19]),font=("Helvetica","16","bold"),fg="w
 p5_LQnoon_label.pack()

 #placing the evening column in the window
 LQeve_frame=LabelFrame(LQ_frame,borderwidth=0,bg="#043b82")
 LQeve_frame.pack(side=LEFT,padx=20)

 LQeve_label=Label(LQeve_frame,text="Evening",font=("Helvetica","16","bold"),fg="white",bg="#043b82")
 LQeve_label.pack(side=TOP,fill=X,expand=True,pady=10)

 p1_LQeve_label=Label(LQeve_frame,text=str(most_recent_user_show[0][8]),font=("Helvetica","16","bold"),fg="whit
 p1_LQeve_label.pack()

 p2_LQeve_label=Label(LQeve_frame,text=str(most_recent_user_show[0][11]),font=("Helvetica","16","bold"),fg="whi
 p2_LQeve_label.pack()

 p3_LQeve_label=Label(LQeve_frame,text=str(most_recent_user_show[0][14]),font=("Helvetica","16","bold"),fg="whi
 p3_LQeve_label.pack()

 p4_LQeve_label=Label(LQeve_frame,text=str(most_recent_user_show[0][17]),font=("Helvetica","16","bold"),fg="whi
 p4_LQeve_label.pack()

 p5_LQeve_label=Label(LQeve_frame,text=str(most_recent_user_show[0][20]),font=("Helvetica","16","bold"),fg="whi
 p5_LQeve_label.pack()

 #placing the total column in the window
 LQtotal_frame=LabelFrame(LQ_frame,borderwidth=0,bg="#043b82")
 LQtotal_frame.pack(side=LEFT,padx=20)

 LQtotal_label=Label(LQtotal_frame,text="Total",font=("Helvetica","16","bold"),fg="white",bg="#043b82")
 LQtotal_label.pack(side=TOP,fill=X,expand=True,pady=10)

 p1_LQtotal_label=Label(LQtotal_frame,text=str(most_recent_user_show[0][1]),font=("Helvetica","16","bold"),fg="
 p1_LQtotal_label.pack()

 p2_LQtotal_label=Label(LQtotal_frame,text=str(most_recent_user_show[0][2]),font=("Helvetica","16","bold"),fg="
 p2_LQtotal_label.pack()

 p3_LQtotal_label=Label(LQtotal_frame,text=str(most_recent_user_show[0][3]),font=("Helvetica","16","bold"),fg="
 p3_LQtotal_label.pack()

 p4_LQtotal_label=Label(LQtotal_frame,text=str(most_recent_user_show[0][4]),font=("Helvetica","16","bold"),fg="
 p4_LQtotal_label.pack()

 p5_LQtotal_label=Label(LQtotal_frame,text=str(most_recent_user_show[0][5]),font=("Helvetica","16","bold"),fg="
 p5_LQtotal_label.pack()

 #placing the buttons in the window
 LQbtn_frame=LabelFrame(list_users_query,borderwidth=0,bg="#043b82")
 LQbtn_frame.pack(side=BOTTOM,padx=40,pady=20)

 #button to edit the data given in this window
 edit_data_button=Button(LQbtn_frame,text="Edit user information",\
 command=lambda:[edit_user_info(str(most_recent_user_show[0][0])),list_users_query.destroy()],\
 width=30,font=("Helvetica","10","bold italic"),fg="#043b82",bg="white",activeforeground="white",activeback
 edit_data_button.pack(side=LEFT,padx=40)

 #button to save the data given in this window
 save_data_button=Button(LQbtn_frame,text="Save user information",command=lambda:[list_users_query.destroy()],\
 width=30,font=("Helvetica","10","bold italic"),fg="#043b82",bg="white",activeforeground="white",activeback
 save_data_button.pack(side=RIGHT,padx=40)

1/3/22, 11:51 PM tmpauspnjrt.html

file:///C:/Users/music/AppData/Local/Temp/tmpauspnjrt.html 16/27

 #commit changes to database
 mydb_user_info.commit()
 create_user_buttons()

 #new window to edit user info
 def edit_user_info(name_edit):
 edit_user=Tk()
 edit_user.geometry("800x480")
 edit_user.overrideredirect("True")
 edit_user.configure(bg="#043b82")

 def update_user_info():
 sql="""UPDATE users SET name_entry=%s,\
 p1_entry=%s,p2_entry=%s,p3_entry=%s,p4_entry=%s,p5_entry=%s,\
 p1_morning=%s,p1_afternoon=%s,p1_evening=%s,\
 p2_morning=%s,p2_afternoon=%s,p2_evening=%s,\
 p3_morning=%s,p3_afternoon=%s,p3_evening=%s,\
 p4_morning=%s,p4_afternoon=%s,p4_evening=%s,\
 p5_morning=%s,p5_afternoon=%s,p5_evening=%s \
 WHERE user_id=%s """

 name_entry=EUname_entry.get()
 p1_entry=int(p1_morning_var_edit.get())+int(p1_afternoon_var_edit.get())+int(p1_evening_var_edit.get()
 p2_entry=int(p2_morning_var_edit.get())+int(p2_afternoon_var_edit.get())+int(p2_evening_var_edit.get()
 p3_entry=int(p3_morning_var_edit.get())+int(p3_afternoon_var_edit.get())+int(p3_evening_var_edit.get()
 p4_entry=int(p4_morning_var_edit.get())+int(p4_afternoon_var_edit.get())+int(p4_evening_var_edit.get()
 p5_entry=int(p5_morning_var_edit.get())+int(p5_afternoon_var_edit.get())+int(p5_evening_var_edit.get()
 p1_morning=p1_morning_var_edit.get()
 p2_morning=p2_morning_var_edit.get()
 p3_morning=p3_morning_var_edit.get()
 p4_morning=p4_morning_var_edit.get()
 p5_morning=p5_morning_var_edit.get()
 p1_afternoon=p1_afternoon_var_edit.get()
 p2_afternoon=p2_afternoon_var_edit.get()
 p3_afternoon=p3_afternoon_var_edit.get()
 p4_afternoon=p4_afternoon_var_edit.get()
 p5_afternoon=p5_afternoon_var_edit.get()
 p1_evening=p1_evening_var_edit.get()
 p2_evening=p2_evening_var_edit.get()
 p3_evening=p3_evening_var_edit.get()
 p4_evening=p4_evening_var_edit.get()
 p5_evening=p5_evening_var_edit.get()
 user_id=most_recent_user_show[0][21]

 values=(name_entry,p1_entry,p2_entry,p3_entry,p4_entry,p5_entry,\
 p1_morning,p1_afternoon,p1_evening,\
 p2_morning,p2_afternoon,p2_evening,\
 p3_morning,p3_afternoon,p3_evening,\
 p4_morning,p4_afternoon,p4_evening,\
 p5_morning,p5_afternoon,p5_evening, user_id)

 my_cursor.execute(sql,values)
 mydb_user_info.commit()

 def show_edit(*args):
 p1_total_show=int(p1_morning_var_edit.get())+int(p1_afternoon_var_edit.get())+int(p1_evening_var_edit
 p2_total_show=int(p2_morning_var_edit.get())+int(p2_afternoon_var_edit.get())+int(p2_evening_var_edit
 p3_total_show=int(p3_morning_var_edit.get())+int(p3_afternoon_var_edit.get())+int(p3_evening_var_edit
 p4_total_show=int(p4_morning_var_edit.get())+int(p4_afternoon_var_edit.get())+int(p4_evening_var_edit
 p5_total_show=int(p5_morning_var_edit.get())+int(p5_afternoon_var_edit.get())+int(p5_evening_var_edit

 p1_total_label_edit=Label(EUtotal_frame,text=str(p1_total_show),font=("Helvetica","12","bold"),fg="whi
 p1_total_label_edit.place(anchor=N,relx=0.5,rely=0.17)

 p2_total_label_edit=Label(EUtotal_frame,text=str(p2_total_show),font=("Helvetica","12","bold"),fg="whi
 p2_total_label_edit.place(anchor=N,relx=0.5,rely=0.35)

 p3_total_label_edit=Label(EUtotal_frame,text=str(p3_total_show),font=("Helvetica","12","bold"),fg="whi
 p3_total_label_edit.place(anchor=N,relx=0.5,rely=0.52)

 p4_total_label_edit=Label(EUtotal_frame,text=str(p4_total_show),font=("Helvetica","12","bold"),fg="whi
 p4_total_label_edit.place(anchor=N,relx=0.5,rely=0.68)

 p5_total_label_edit=Label(EUtotal_frame,text=str(p5_total_show),font=("Helvetica","12","bold"),fg="whi
 p5_total_label_edit.place(anchor=N,relx=0.5,rely=0.86)

1/3/22, 11:51 PM tmpauspnjrt.html

file:///C:/Users/music/AppData/Local/Temp/tmpauspnjrt.html 17/27

 '''
 #getting most recently created user
 my_cursor.execute("SELECT * FROM users ORDER BY user_id DESC LIMIT 1")
 most_recent_user=my_cursor.fetchall()
 '''

 edit_name="SELECT * FROM users WHERE name_entry=%s"
 edit_name_values=(name_list,)

 most_recent_user=my_cursor.execute(edit_name,edit_name_values)
 most_recent_user=my_cursor.fetchall()

 EUtitle_label=Label(edit_user,text="Edit User",font=("Helvetica","22","bold"),fg="white",bg="#043b82")
 EUtitle_label.pack()

 editUser_frame=LabelFrame(edit_user,borderwidth=0,bg="#043b82")
 editUser_frame.pack()

 #creating and placing a section to edit the username
 EUname_frame=LabelFrame(editUser_frame,borderwidth=0,bg="#043b82",padx=100)
 EUname_frame.pack(side=TOP,fill=X,expand=True,pady=10)

 EUname_label=Label(EUname_frame,text="Enter your full name: ",font=("Helvetica","16","bold"),fg="white",bg
 EUname_label.pack(side=LEFT)

 EUname_entry=Entry(EUname_frame,borderwidth=0,width=30,font=("Helvetica","12","bold"),fg="#043b82",bg="whi
 #EUname_entry.bind("<Button-1>",openkeyboard)
 EUname_entry.pack(side=LEFT,padx=10)
 EUname_entry.insert(0, most_recent_user[0][0])

 #creating and placing the main body of the window
 EUmain_frame=LabelFrame(editUser_frame,borderwidth=0,bg="#043b82")
 EUmain_frame.pack(side=TOP,fill=X,expand=True)

 #placing the pill column in the window
 EUpill_frame=LabelFrame(EUmain_frame,borderwidth=0,bg="#043b82")
 EUpill_frame.pack(side=LEFT,fill=BOTH,expand=True,padx=10)

 EUdosage_label=Label(EUpill_frame,text="Check dosage:",font=("Helvetica","16","bold"),fg="white",bg="#043b
 EUdosage_label.pack(side=TOP,fill=X)

 p1EU_label=Label(EUpill_frame,text=most_local_info[0][0],font=("Helvetica","16","italic"),fg="white",bg="#
 p1EU_label.pack()

 p2EU_label=Label(EUpill_frame,text=most_local_info[0][1],font=("Helvetica","16","italic"),fg="white",bg="#
 p2EU_label.pack()

 p3EU_label=Label(EUpill_frame,text=most_local_info[0][2],font=("Helvetica","16","italic"),fg="white",bg="#
 p3EU_label.pack()

 p4EU_label=Label(EUpill_frame,text=most_local_info[0][3],font=("Helvetica","16","italic"),fg="white",bg="#
 p4EU_label.pack()

 p5EU_label=Label(EUpill_frame,text=most_local_info[0][4],font=("Helvetica","16","italic"),fg="white",bg="#
 p5EU_label.pack()

 #list for the drop down menus
 Number_list_edit=["0","1","2","3","4","5","6","7","8","9"]

 #variables for the drop down menus
 #setting up variables for the morning
 p1_morning_var_edit=StringVar(edit_user)
 p1_morning_var_edit.set(Number_list_edit[0])

 p2_morning_var_edit=StringVar(edit_user)
 p2_morning_var_edit.set(Number_list_edit[0])

 p3_morning_var_edit=StringVar(edit_user)
 p3_morning_var_edit.set(Number_list_edit[0])

 p4_morning_var_edit=StringVar(edit_user)
 p4_morning_var_edit.set(Number_list_edit[0])

 p5_morning_var_edit=StringVar(edit_user)
 p5_morning_var_edit.set(Number_list_edit[0])

1/3/22, 11:51 PM tmpauspnjrt.html

file:///C:/Users/music/AppData/Local/Temp/tmpauspnjrt.html 18/27

 #setting up variables for the afternoon
 p1_afternoon_var_edit=StringVar(edit_user)
 p1_afternoon_var_edit.set(Number_list_edit[0])

 p2_afternoon_var_edit=StringVar(edit_user)
 p2_afternoon_var_edit.set(Number_list_edit[0])

 p3_afternoon_var_edit=StringVar(edit_user)
 p3_afternoon_var_edit.set(Number_list_edit[0])

 p4_afternoon_var_edit=StringVar(edit_user)
 p4_afternoon_var_edit.set(Number_list_edit[0])

 p5_afternoon_var_edit=StringVar(edit_user)
 p5_afternoon_var_edit.set(Number_list_edit[0])

 #setting up variables for the evening
 p1_evening_var_edit=StringVar(edit_user)
 p1_evening_var_edit.set(Number_list_edit[0])

 p2_evening_var_edit=StringVar(edit_user)
 p2_evening_var_edit.set(Number_list_edit[0])

 p3_evening_var_edit=StringVar(edit_user)
 p3_evening_var_edit.set(Number_list_edit[0])

 p4_evening_var_edit=StringVar(edit_user)
 p4_evening_var_edit.set(Number_list_edit[0])

 p5_evening_var_edit=StringVar(edit_user)
 p5_evening_var_edit.set(Number_list_edit[0])

 #placing the morning column in the window
 EUmorn_frame=LabelFrame(EUmain_frame,borderwidth=0,bg="#043b82")
 EUmorn_frame.pack(side=LEFT,padx=10)

 EUmorn_label=Label(EUmorn_frame,text="Morning",font=("Helvetica","16","bold"),fg="white",bg="#043b82")
 EUmorn_label.pack(side=TOP,fill=X)

 #creating and placing drop down menus for the morning
 p1_morning_edit=OptionMenu(EUmorn_frame,p1_morning_var_edit,*Number_list_edit)
 p1_morning_edit.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p1_morning_edit["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p1_morning_edit.pack()

 p2_morning_edit=OptionMenu(EUmorn_frame,p2_morning_var_edit,*Number_list_edit)
 p2_morning_edit.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p2_morning_edit["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p2_morning_edit.pack()

 p3_morning_edit=OptionMenu(EUmorn_frame,p3_morning_var_edit,*Number_list_edit)
 p3_morning_edit.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p3_morning_edit["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p3_morning_edit.pack()

 p4_morning_edit=OptionMenu(EUmorn_frame,p4_morning_var_edit,*Number_list_edit)
 p4_morning_edit.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p4_morning_edit["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p4_morning_edit.pack()

 p5_morning_edit=OptionMenu(EUmorn_frame,p5_morning_var_edit,*Number_list_edit)
 p5_morning_edit.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p5_morning_edit["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p5_morning_edit.pack()

 #placing the afternoon column in the window
 EUnoon_frame=LabelFrame(EUmain_frame,borderwidth=0,bg="#043b82")
 EUnoon_frame.pack(side=LEFT,padx=10)

 EUnoon_label=Label(EUnoon_frame,text="Afternoon",font=("Helvetica","16","bold"),fg="white",bg="#043b82")

1/3/22, 11:51 PM tmpauspnjrt.html

file:///C:/Users/music/AppData/Local/Temp/tmpauspnjrt.html 19/27

 EUnoon_label.pack(side=TOP,fill=X)

 #creating and placing drop down menus for the afternoon
 p1_afternoon_edit=OptionMenu(EUnoon_frame,p1_afternoon_var_edit,*Number_list_edit)
 p1_afternoon_edit.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p1_afternoon_edit["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p1_afternoon_edit.pack()

 p2_afternoon_edit=OptionMenu(EUnoon_frame,p2_afternoon_var_edit,*Number_list_edit)
 p2_afternoon_edit.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p2_afternoon_edit["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p2_afternoon_edit.pack()

 p3_afternoon_edit=OptionMenu(EUnoon_frame,p3_afternoon_var_edit,*Number_list_edit)
 p3_afternoon_edit.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p3_afternoon_edit["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p3_afternoon_edit.pack()

 p4_afternoon_edit=OptionMenu(EUnoon_frame,p4_afternoon_var_edit,*Number_list_edit)
 p4_afternoon_edit.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p4_afternoon_edit["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p4_afternoon_edit.pack()

 p5_afternoon_edit=OptionMenu(EUnoon_frame,p5_afternoon_var_edit,*Number_list_edit)
 p5_afternoon_edit.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p5_afternoon_edit["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p5_afternoon_edit.pack()

 #placing the evening column in the window
 EUeve_frame=LabelFrame(EUmain_frame,borderwidth=0,bg="#043b82")
 EUeve_frame.pack(side=LEFT,padx=10)

 EUeve_label=Label(EUeve_frame,text="Morning",font=("Helvetica","16","bold"),fg="white",bg="#043b82")
 EUeve_label.pack(side=TOP,fill=X)

 #creating and placing drop down menus for the evening
 p1_evening_edit=OptionMenu(EUeve_frame,p1_evening_var_edit,*Number_list_edit)
 p1_evening_edit.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p1_evening_edit["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p1_evening_edit.pack()

 p2_evening_edit=OptionMenu(EUeve_frame,p2_evening_var_edit,*Number_list_edit)
 p2_evening_edit.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p2_evening_edit["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p2_evening_edit.pack()

 p3_evening_edit=OptionMenu(EUeve_frame,p3_evening_var_edit,*Number_list_edit)
 p3_evening_edit.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p3_evening_edit["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p3_evening_edit.pack()

 p4_evening_edit=OptionMenu(EUeve_frame,p4_evening_var_edit,*Number_list_edit)
 p4_evening_edit.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p4_evening_edit["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p4_evening_edit.pack()

 p5_evening_edit=OptionMenu(EUeve_frame,p5_evening_var_edit,*Number_list_edit)
 p5_evening_edit.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p5_evening_edit["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p5_evening_edit.pack()

 #placing the total column in the window
 EUtotal_frame=LabelFrame(EUmain_frame,borderwidth=0,bg="#043b82")
 EUtotal_frame.pack(side=RIGHT,fill=Y,expand=True,padx=10)

 EUtotal_label=Label(EUtotal_frame,text="Total",font=("Helvetica","16","bold"),fg="white",bg="#043b82")
 EUtotal_label.pack(side=TOP)

1/3/22, 11:51 PM tmpauspnjrt.html

file:///C:/Users/music/AppData/Local/Temp/tmpauspnjrt.html 20/27

 #code to update the total amount of pills shown on screen
 p1_morning_var_edit.trace('w',show_edit)
 p2_morning_var_edit.trace('w',show_edit)
 p3_morning_var_edit.trace('w',show_edit)
 p4_morning_var_edit.trace('w',show_edit)
 p5_morning_var_edit.trace('w',show_edit)
 p1_afternoon_var_edit.trace('w',show_edit)
 p2_afternoon_var_edit.trace('w',show_edit)
 p3_afternoon_var_edit.trace('w',show_edit)
 p4_afternoon_var_edit.trace('w',show_edit)
 p5_afternoon_var_edit.trace('w',show_edit)
 p1_evening_var_edit.trace('w',show_edit)
 p2_evening_var_edit.trace('w',show_edit)
 p3_evening_var_edit.trace('w',show_edit)
 p4_evening_var_edit.trace('w',show_edit)
 p5_evening_var_edit.trace('w',show_edit)

 #button to save the data given in this window
 EUbtn_frame=LabelFrame(edit_user,borderwidth=0,bg="#043b82")
 EUbtn_frame.pack(side=BOTTOM,fill=X,padx=60,pady=20)

 update_info_button=Button(EUbtn_frame,text="Update user information",\
 command=lambda:[update_user_info(),list_users(EUname_entry.get()),edit_user.destroy()],\
 font=("Helvetica","10","bold italic"),fg="#043b82",bg="white",activeforeground="white",activebackgroun
 update_info_button.pack(side=BOTTOM,fill=X)

 #2nd window when clicking on "Create User" that is used to set up dosages for the user
 NUtitle_label=Label(new_user,text="Create a User",font=("Helvetica","22","bold"),fg="white",bg="#043b82")
 NUtitle_label.pack()

 newUser_frame=LabelFrame(new_user,borderwidth=0,bg="#043b82")
 newUser_frame.pack()

 #creating and placing a section to write the username
 NUname_frame=LabelFrame(newUser_frame,borderwidth=0,bg="#043b82",padx=100)
 NUname_frame.pack(side=TOP,fill=X,expand=True,pady=10)

 NUname_label=Label(NUname_frame,text="Enter your full name:",font=("Helvetica","16","bold"),fg="white",bg="#043b82
 NUname_label.pack(side=LEFT)

 NUname_entry=Entry(NUname_frame,borderwidth=0,width=30,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 #NUname_entry.bind("<Button-1>",openkeyboard)
 NUname_entry.pack(side=LEFT,padx=10)

 #creating and placing the main body of the window
 NUmain_frame=LabelFrame(newUser_frame,borderwidth=0,bg="#043b82")
 NUmain_frame.pack(side=TOP,fill=X,expand=True)

 #placing the pills column in the window
 NUpill_frame=LabelFrame(NUmain_frame,borderwidth=0,bg="#043b82")
 NUpill_frame.pack(side=LEFT,fill=BOTH,expand=True,padx=10)

 NUdosage_label=Label(NUpill_frame,text="Set up dosage:",font=("Helvetica","16","bold"),fg="white",bg="#043b82")
 NUdosage_label.pack(side=TOP,fill=X)

 p1NU_label=Label(NUpill_frame,text=str(most_local_info[0][0]),font=("Helvetica","16","italic"),fg="white",bg="#043
 p1NU_label.pack()

 p2NU_label=Label(NUpill_frame,text=str(most_local_info[0][1]),font=("Helvetica","16","italic"),fg="white",bg="#043
 p2NU_label.pack()

 p3NU_label=Label(NUpill_frame,text=str(most_local_info[0][2]),font=("Helvetica","16","italic"),fg="white",bg="#043
 p3NU_label.pack()

 p4NU_label=Label(NUpill_frame,text=str(most_local_info[0][3]),font=("Helvetica","16","italic"),fg="white",bg="#043
 p4NU_label.pack()

 p5NU_label=Label(NUpill_frame,text=str(most_local_info[0][4]),font=("Helvetica","16","italic"),fg="white",bg="#043
 p5NU_label.pack()

 #list for the drop down menus
 Number_list=["0","1","2","3","4","5","6","7","8","9"]

1/3/22, 11:51 PM tmpauspnjrt.html

file:///C:/Users/music/AppData/Local/Temp/tmpauspnjrt.html 21/27

 #variables for the drop down menus
 #setting up variables for the morning
 p1_morning_var=StringVar(new_user)
 p1_morning_var.set(Number_list[0])

 p2_morning_var=StringVar(new_user)
 p2_morning_var.set(Number_list[0])

 p3_morning_var=StringVar(new_user)
 p3_morning_var.set(Number_list[0])

 p4_morning_var=StringVar(new_user)
 p4_morning_var.set(Number_list[0])

 p5_morning_var=StringVar(new_user)
 p5_morning_var.set(Number_list[0])

 #setting up variables for the afternoon
 p1_afternoon_var=StringVar(new_user)
 p1_afternoon_var.set(Number_list[0])

 p2_afternoon_var=StringVar(new_user)
 p2_afternoon_var.set(Number_list[0])

 p3_afternoon_var=StringVar(new_user)
 p3_afternoon_var.set(Number_list[0])

 p4_afternoon_var=StringVar(new_user)
 p4_afternoon_var.set(Number_list[0])

 p5_afternoon_var=StringVar(new_user)
 p5_afternoon_var.set(Number_list[0])

 #setting up variables for the evening
 p1_evening_var=StringVar(new_user)
 p1_evening_var.set(Number_list[0])

 p2_evening_var=StringVar(new_user)
 p2_evening_var.set(Number_list[0])

 p3_evening_var=StringVar(new_user)
 p3_evening_var.set(Number_list[0])

 p4_evening_var=StringVar(new_user)
 p4_evening_var.set(Number_list[0])

 p5_evening_var=StringVar(new_user)
 p5_evening_var.set(Number_list[0])

 #placing the morning section in the window
 NUmorn_frame=LabelFrame(NUmain_frame,borderwidth=0,bg="#043b82")
 NUmorn_frame.pack(side=LEFT,padx=10)

 NUmorn_label=Label(NUmorn_frame,text="Morning",font=("Helvetica","16","bold"),fg="white",bg="#043b82")
 NUmorn_label.pack(side=TOP,fill=X)

 #creating and placing drop down menus for the morning
 p1_morning=OptionMenu(NUmorn_frame,p1_morning_var,*Number_list)
 p1_morning.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p1_morning["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p1_morning.pack()

 p2_morning=OptionMenu(NUmorn_frame,p2_morning_var,*Number_list)
 p2_morning.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p2_morning["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p2_morning.pack()

 p3_morning=OptionMenu(NUmorn_frame,p3_morning_var,*Number_list)
 p3_morning.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p3_morning["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p3_morning.pack()

 p4_morning=OptionMenu(NUmorn_frame,p4_morning_var,*Number_list)
 p4_morning.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")

1/3/22, 11:51 PM tmpauspnjrt.html

file:///C:/Users/music/AppData/Local/Temp/tmpauspnjrt.html 22/27

 p4_morning["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p4_morning.pack()

 p5_morning=OptionMenu(NUmorn_frame,p5_morning_var,*Number_list)
 p5_morning.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p5_morning["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p5_morning.pack()

 #placing the afternoon section in the window
 NUnoon_frame=LabelFrame(NUmain_frame,borderwidth=0,bg="#043b82")
 NUnoon_frame.pack(side=LEFT,padx=10)

 NUnoon_label=Label(NUnoon_frame,text="Afternoon",font=("Helvetica","16","bold"),fg="white",bg="#043b82")
 NUnoon_label.pack(side=TOP,fill=X)

 #creating and placing drop down menus for the afternoon
 p1_afternoon=OptionMenu(NUnoon_frame,p1_afternoon_var,*Number_list)
 p1_afternoon.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p1_afternoon["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p1_afternoon.pack()

 p2_afternoon=OptionMenu(NUnoon_frame,p2_afternoon_var,*Number_list)
 p2_afternoon.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p2_afternoon["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p2_afternoon.pack()

 p3_afternoon=OptionMenu(NUnoon_frame,p3_afternoon_var,*Number_list)
 p3_afternoon.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p3_afternoon["menu"].config(bg="white", fg="#043b82", font=("Helvetica", "9", "bold"), borderwidth=0)
 p3_afternoon.pack()

 p4_afternoon=OptionMenu(NUnoon_frame,p4_afternoon_var,*Number_list)
 p4_afternoon.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p4_afternoon["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p4_afternoon.pack()

 p5_afternoon=OptionMenu(NUnoon_frame,p5_afternoon_var,*Number_list)
 p5_afternoon.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p5_afternoon["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p5_afternoon.pack()

 #placing the evening section in the window
 NUeve_frame=LabelFrame(NUmain_frame,borderwidth=0,bg="#043b82")
 NUeve_frame.pack(side=LEFT,padx=10)

 NUeve_label=Label(NUeve_frame,text="Evening",font=("Helvetica","16","bold"),fg="white",bg="#043b82")
 NUeve_label.pack(side=TOP,fill=X)

 #creating and placing drop down menus for the evening
 p1_evening=OptionMenu(NUeve_frame,p1_evening_var,*Number_list)
 p1_evening.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p1_evening["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p1_evening.pack()

 p2_evening=OptionMenu(NUeve_frame,p2_evening_var,*Number_list)
 p2_evening.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p2_evening["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p2_evening.pack()

 p3_evening=OptionMenu(NUeve_frame,p3_evening_var,*Number_list)
 p3_evening.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p3_evening["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p3_evening.pack()

 p4_evening=OptionMenu(NUeve_frame,p4_evening_var,*Number_list)
 p4_evening.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p4_evening["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")

1/3/22, 11:51 PM tmpauspnjrt.html

file:///C:/Users/music/AppData/Local/Temp/tmpauspnjrt.html 23/27

 p4_evening.pack()

 p5_evening=OptionMenu(NUeve_frame,p5_evening_var,*Number_list)
 p5_evening.config(borderwidth=0,width=1,font=("Helvetica","12","bold"),fg="#043b82",bg="white")
 p5_evening["menu"].config(borderwidth=0,font=("Helvetica","9","bold"),fg="#043b82",bg="white",\
 activeforeground="white",activebackground="#00a047")
 p5_evening.pack()

 #placing the total column in the window
 NUtotal_frame=LabelFrame(NUmain_frame,borderwidth=0,bg="#043b82")
 NUtotal_frame.pack(side=RIGHT,fill=Y,expand=True,padx=10)

 NUtotal_label=Label(NUtotal_frame,text="Total",font=("Helvetica","16","bold"),fg="white",bg="#043b82")
 NUtotal_label.pack(side=TOP)

 #code to update the total amount of pills shown on screen
 p1_morning_var.trace('w',add_total_pill_amount)
 p2_morning_var.trace('w',add_total_pill_amount)
 p3_morning_var.trace('w',add_total_pill_amount)
 p4_morning_var.trace('w',add_total_pill_amount)
 p5_morning_var.trace('w',add_total_pill_amount)
 p1_afternoon_var.trace('w',add_total_pill_amount)
 p2_afternoon_var.trace('w',add_total_pill_amount)
 p3_afternoon_var.trace('w',add_total_pill_amount)
 p4_afternoon_var.trace('w',add_total_pill_amount)
 p5_afternoon_var.trace('w',add_total_pill_amount)
 p1_evening_var.trace('w',add_total_pill_amount)
 p2_evening_var.trace('w',add_total_pill_amount)
 p3_evening_var.trace('w',add_total_pill_amount)
 p4_evening_var.trace('w',add_total_pill_amount)
 p5_evening_var.trace('w',add_total_pill_amount)

 #button to save the data given in this window
 NUbtn_frame=LabelFrame(new_user,borderwidth=0,bg="#043b82")
 NUbtn_frame.pack(side=BOTTOM,fill=X,padx=60,pady=20)

 check_info_button=Button(NUbtn_frame,text="Save user information",\
 command=lambda:[submit(),list_users(NUname_entry.get()),new_user.destroy()],\
 font=("Helvetica","10","bold italic"),fg="#043b82",bg="white",activeforeground="white",activebackground="#00a0
 check_info_button.pack(side=BOTTOM,fill=X)

 #creating user profiles (shown when clicked on relevant button on the homescreen)
 def show_user_window(user_name_show):
 show_user=Tk()
 show_user.geometry("800x480")
 show_user.overrideredirect(True)
 show_user.configure(bg="#043b82")

 name="SELECT * FROM users WHERE name_entry=%s"
 name_value=(user_name_show,)

 #getting user information
 search_result_user=my_cursor.execute(name,name_value)
 search_result_user=my_cursor.fetchall()

 #code to get the most recent local_info inputted
 my_cursor_local_info.execute("SELECT * FROM info ORDER BY user_id_local DESC LIMIT 1")
 search_result_local=my_cursor_local_info.fetchall()

 showUser_label=Label(show_user,text="User profile of "+str(search_result_user[0][0]),font=("Helvetica","22","bold"),fg
 showUser_label.pack(pady=10)

 showUser_frame=LabelFrame(show_user,borderwidth=0,bg="#043b82")
 showUser_frame.pack(pady=10,fill=BOTH,expand=True,padx=40)

 #placing the pills column in the window
 SUpill_frame=LabelFrame(showUser_frame,borderwidth=0,bg="#043b82")
 SUpill_frame.pack(side=LEFT,fill=X,expand=True,padx=20)

 SUdosage_label=Label(SUpill_frame,text=" ",font=("Helvetica","16","bold"),fg="white",bg="#043b82")
 SUdosage_label.pack(side=TOP,fill=X,expand=True,pady=10)

 p1SU_label=Label(SUpill_frame,text=str(search_result_local[0][0]),font=("Helvetica","16","italic"),fg="white",bg="#043

1/3/22, 11:51 PM tmpauspnjrt.html

file:///C:/Users/music/AppData/Local/Temp/tmpauspnjrt.html 24/27

 p1SU_label.pack()

 p2SU_label=Label(SUpill_frame,text=str(search_result_local[0][1]),font=("Helvetica","16","italic"),fg="white",bg="#043
 p2SU_label.pack()

 p3SU_label=Label(SUpill_frame,text=str(search_result_local[0][2]),font=("Helvetica","16","italic"),fg="white",bg="#043
 p3SU_label.pack()

 p4SU_label=Label(SUpill_frame,text=str(search_result_local[0][3]),font=("Helvetica","16","italic"),fg="white",bg="#043
 p4SU_label.pack()

 p5SU_label=Label(SUpill_frame,text=str(search_result_local[0][4]),font=("Helvetica","16","italic"),fg="white",bg="#043
 p5SU_label.pack()

 #placing the morning column in the window
 SUmorn_frame=LabelFrame(showUser_frame,borderwidth=0,bg="#043b82")
 SUmorn_frame.pack(side=LEFT,padx=20)

 SUmorn_label=Label(SUmorn_frame,text="Morning",font=("Helvetica","16","bold"),fg="white",bg="#043b82")
 SUmorn_label.pack(side=TOP,fill=X,expand=True,pady=10)

 p1_SUmorn_label=Label(SUmorn_frame,text=str(search_result_user[0][6]),font=("Helvetica","16","bold"),fg="white",bg="#0
 p1_SUmorn_label.pack()

 p2_SUmorn_label=Label(SUmorn_frame,text=str(search_result_user[0][9]),font=("Helvetica","16","bold"),fg="white",bg="#0
 p2_SUmorn_label.pack()

 p3_SUmorn_label=Label(SUmorn_frame,text=str(search_result_user[0][12]),font=("Helvetica","16","bold"),fg="white",bg="#
 p3_SUmorn_label.pack()

 p4_SUmorn_label=Label(SUmorn_frame,text=str(search_result_user[0][15]),font=("Helvetica","16","bold"),fg="white",bg="#
 p4_SUmorn_label.pack()

 p5_SUmorn_label=Label(SUmorn_frame,text=str(search_result_user[0][18]),font=("Helvetica","16","bold"),fg="white",bg="#
 p5_SUmorn_label.pack()

 #placing the afternoon column in the window
 SUnoon_frame=LabelFrame(showUser_frame,borderwidth=0,bg="#043b82")
 SUnoon_frame.pack(side=LEFT,padx=20)

 SUnoon_label=Label(SUnoon_frame,text="Afternoon",font=("Helvetica","16","bold"),fg="white",bg="#043b82")
 SUnoon_label.pack(side=TOP,fill=X,expand=True,pady=10)

 p1_SUnoon_label=Label(SUnoon_frame,text=str(search_result_user[0][7]),font=("Helvetica","16","bold"),fg="white",bg="#0
 p1_SUnoon_label.pack()

 p2_SUnoon_label=Label(SUnoon_frame,text=str(search_result_user[0][10]),font=("Helvetica","16","bold"),fg="white",bg="#
 p2_SUnoon_label.pack()

 p3_SUnoon_label=Label(SUnoon_frame,text=str(search_result_user[0][13]),font=("Helvetica","16","bold"),fg="white",bg="#
 p3_SUnoon_label.pack()

 p4_SUnoon_label=Label(SUnoon_frame,text=str(search_result_user[0][16]),font=("Helvetica","16","bold"),fg="white",bg="#
 p4_SUnoon_label.pack()

 p5_SUnoon_label=Label(SUnoon_frame,text=str(search_result_user[0][19]),font=("Helvetica","16","bold"),fg="white",bg="#
 p5_SUnoon_label.pack()

 #placing the evening column in the window
 SUeve_frame=LabelFrame(showUser_frame,borderwidth=0,bg="#043b82")
 SUeve_frame.pack(side=LEFT,padx=20)

 SUeve_label=Label(SUeve_frame,text="Evening",font=("Helvetica","16","bold"),fg="white",bg="#043b82")
 SUeve_label.pack(side=TOP,fill=X,expand=True,pady=10)

 p1_SUeve_label=Label(SUeve_frame,text=str(search_result_user[0][8]),font=("Helvetica","16","bold"),fg="white",bg="#043
 p1_SUeve_label.pack()

 p2_SUeve_label=Label(SUeve_frame,text=str(search_result_user[0][11]),font=("Helvetica","16","bold"),fg="white",bg="#04
 p2_SUeve_label.pack()

 p3_SUeve_label=Label(SUeve_frame,text=str(search_result_user[0][14]),font=("Helvetica","16","bold"),fg="white",bg="#04
 p3_SUeve_label.pack()

 p4_SUeve_label=Label(SUeve_frame,text=str(search_result_user[0][17]),font=("Helvetica","16","bold"),fg="white",bg="#04
 p4_SUeve_label.pack()

1/3/22, 11:51 PM tmpauspnjrt.html

file:///C:/Users/music/AppData/Local/Temp/tmpauspnjrt.html 25/27

 p5_SUeve_label=Label(SUeve_frame,text=str(search_result_user[0][20]),font=("Helvetica","16","bold"),fg="white",bg="#04
 p5_SUeve_label.pack()

 #placing the total column in the window
 SUtotal_frame=LabelFrame(showUser_frame,borderwidth=0,bg="#043b82")
 SUtotal_frame.pack(side=LEFT,padx=20)

 SUtotal_label=Label(SUtotal_frame,text="Total",font=("Helvetica","16","bold"),fg="white",bg="#043b82")
 SUtotal_label.pack(side=TOP,fill=X,expand=True,pady=10)

 p1_SUtotal_label=Label(SUtotal_frame,text=str(search_result_user[0][1]),font=("Helvetica","16","bold"),fg="white",bg="
 p1_SUtotal_label.pack()

 p2_SUtotal_label=Label(SUtotal_frame,text=str(search_result_user[0][2]),font=("Helvetica","16","bold"),fg="white",bg="
 p2_SUtotal_label.pack()

 p3_SUtotal_label=Label(SUtotal_frame,text=str(search_result_user[0][3]),font=("Helvetica","16","bold"),fg="white",bg="
 p3_SUtotal_label.pack()

 p4_SUtotal_label=Label(SUtotal_frame,text=str(search_result_user[0][4]),font=("Helvetica","16","bold"),fg="white",bg="
 p4_SUtotal_label.pack()

 p5_SUtotal_label=Label(SUtotal_frame,text=str(search_result_user[0][5]),font=("Helvetica","16","bold"),fg="white",bg="
 p5_SUtotal_label.pack()

 #button to return to the homescreen
 SUbtn_frame=LabelFrame(show_user,borderwidth=0,bg="#043b82")
 SUbtn_frame.pack(side=BOTTOM,fill=X,padx=60,pady=20)

 done_button=Button(SUbtn_frame,text="Return to the home screen",command=lambda:[show_user.destroy()],\
 font=("Helvetica","10","bold italic"),fg="#043b82",bg="white",activeforeground="white",activebackground="#00a047")
 done_button.pack(fill=X,expand=True)

 #creating buttons on the homescreen when a new user has been created
 def create_user_buttons():
 global user1_button,user2_button,user3_button
 #prints out contents of table to terminal
 my_cursor.execute("SELECT * FROM users")
 button_result=my_cursor.fetchall()

 #placing buttons depending on the number of users
 if button_result[0][0] !="Start_name":
 user1_button=Button(homeUsers_frame,text=button_result[0][0],command=lambda:[show_user_window(button_result[0][0])
 width=16,height=6,font=("Helvetica","12","bold"),fg="white",bg="#00a047",activeforeground="#00a047",activeback
 user1_button.grid(row=0,column=1,padx=5)

 if button_result[1][0] !="Start_name":
 user2_button=Button(homeUsers_frame,text=button_result[1][0],command=lambda:[show_user_window(button_result[1][0])
 width=16,height=6,font=("Helvetica","12","bold"),fg="white",bg="#00a047",activeforeground="#00a047",activeback
 user2_button.grid(row=0,column=2,padx=5)

 if button_result[2][0] !="Start_name":
 user3_button=Button(homeUsers_frame,text=button_result[2][0],command=lambda:[show_user_window(button_result[2][0])
 width=16,height=6,font=("Helvetica","12","bold"),fg="white",bg="#00a047",activeforeground="#00a047",activeback
 user3_button.grid(row=0,column=3,padx=5)

 if button_result[0][0] != "Start_name" or button_result[1][0] != "Start_name" or button_result[2][0] != "Start_name":
 enter_info_button=Button(homeUsers_frame,text="Create user",command=check_user_amount,\
 width=13,height=6,font=("Helvetica", "12", "bold"),fg="#043b82",bg="white",activeforeground="white",activeback
 enter_info_button.grid(row=0,column=4,padx=5)

 #otherwise, placing the 'Create User' button in the center if there are no existing users
 if button_result[0][0] == "Start_name" and button_result[1][0] == "Start_name" and button_result[2][0] == "Start_name"
 enter_info_button=Button(homeUsers_frame,text="Create user",command=check_user_amount,\
 width=14,height=6,font=("Helvetica", "12", "bold"),fg="#043b82",bg="white",activeforeground="white",activeback
 enter_info_button.grid(row=0,column=0,padx=5)

 #deleting the button for the user when the user is deleted
 def delete_user_buttons(delete_user):
 #prints out contents of table to terminal
 my_cursor.execute("SELECT * FROM users")
 button_delete=my_cursor.fetchall()

 #print(delete_user)

 if delete_user==1:

1/3/22, 11:51 PM tmpauspnjrt.html

file:///C:/Users/music/AppData/Local/Temp/tmpauspnjrt.html 26/27

 user1_button.destroy()

 if delete_user==2:
 user2_button.destroy()

 if delete_user==3:
 user3_button.destroy()

 restart_program()

 #checking if the maximum limit of 3 users is exceeded
 def check_user_amount():
 #prints out contents of table to terminal
 my_cursor.execute("SELECT * FROM users")
 check_user=my_cursor.fetchall()

 def replace(replace_name):
 replace="""UPDATE users SET name_entry=%s,\
 p1_entry=%s,p2_entry=%s,p3_entry=%s,p4_entry=%s,p5_entry=%s,\
 p1_morning=%s,p1_afternoon=%s,p1_evening=%s,\
 p2_morning=%s,p2_afternoon=%s,p2_evening=%s,\
 p3_morning=%s,p3_afternoon=%s,p3_evening=%s,\
 p4_morning=%s,p4_afternoon=%s,p4_evening=%s,\
 p5_morning=%s,p5_afternoon=%s,p5_evening=%s WHERE name_entry=%s"""
 replace_values=("Start_name",0,replace_name)

 my_cursor.execute(replace,replace_values)
 mydb_user_info.commit()

 if check_user[0][0] != "Start_name" and check_user[1][0] != "Start_name" and check_user[2][0] != "Start_name":
 replace_user=Tk()
 replace_user.geometry("800x480")
 replace_user.overrideredirect(True)
 replace_user.configure(bg="#043b82")

 #prints out contents of table to terminal
 my_cursor.execute("SELECT * FROM users")
 replace_result=my_cursor.fetchall()

 replace_user_label=Label(replace_user,\
 text="You have reached the maximum amount of users.\nPlease delete one of the following users or cancel.",\
 font=("Helvetica","22","bold"),fg="white",bg="#043b82")
 replace_user_label.pack(pady=40)

 #placing the usernames in the window
 replaceUser_frame=LabelFrame(replace_user,borderwidth=0,bg="#043b82")
 replaceUser_frame.pack(fill=BOTH,expand=True,padx=200)

 user1_delete=Button(replaceUser_frame,text=replace_result[0][0],\
 command=lambda:[replace(replace_result[0][0]),create_user_buttons(),replace_user.destroy(),delete_user_buttons
 font=("Helvetica","16","bold"),fg="#043b82",bg="white",activeforeground="white",activebackground="red")
 user1_delete.pack(fill=X,expand=True)

 user2_delete=Button(replaceUser_frame,text=replace_result[1][0],\
 command=lambda:[replace(replace_result[1][0]),create_user_buttons(),replace_user.destroy(),delete_user_buttons
 font=("Helvetica","16","bold"),fg="#043b82",bg="white",activeforeground="white",activebackground="red")
 user2_delete.pack(fill=X,expand=True)

 user3_delete=Button(replaceUser_frame,text=replace_result[2][0],\
 command=lambda:[replace(replace_result[2][0]),create_user_buttons(),replace_user.destroy(),delete_user_buttons
 font=("Helvetica","16","bold"),fg="#043b82",bg="white",activeforeground="white",activebackground="red")
 user3_delete.pack(fill=X,expand=True)

 #button to cancel operation and return to the homescreen
 RUcancel_frame=LabelFrame(replace_user,borderwidth=0,bg="#043b82")
 RUcancel_frame.pack(side=BOTTOM,fill=X,padx=60,pady=20)

 cancel_button=Button(RUcancel_frame,text="Cancel and return to the home screen",command=lambda:[replace_user.destr
 font=("Helvetica","10","bold italic"),fg="#043b82",bg="white",activeforeground="white",activebackground="#00a0
 cancel_button.pack(fill=X,expand=True)

 #for the cases, where the maximum user limit is not reached
 else:
 enter_info_window()

1/3/22, 11:51 PM tmpauspnjrt.html

file:///C:/Users/music/AppData/Local/Temp/tmpauspnjrt.html 27/27

 #placing elements on the homescreen
 home_frame=LabelFrame(root,borderwidth=0,bg="#043b82",padx=10,pady=5)
 home_frame.pack(fill=X,pady=30)

 #frame for the time elements on the homescreen
 time_frame=LabelFrame(home_frame,borderwidth=0,fg="white",bg="#043b82")
 time_frame.pack(side=LEFT,padx=45)

 #labels used in the clock function
 day_label=Label(time_frame,text="",font=("Helvetica","16","bold"),fg="white",bg="#043b82")
 day_label.pack(anchor=W)

 time_label=Label(time_frame,text="",font=("Helvetica","16","bold"),fg="white",bg="#043b82")
 time_label.pack(anchor=W)

 zone_label=Label(time_frame,text="",font=("Helvetica","14","italic"),fg="white",bg="#043b82")
 zone_label.pack(anchor=W)

 clock()

 #frame for the user buttons & 'Create user' on the homescreen
 homeUsers_frame=LabelFrame(root,borderwidth=0,bg="#043b82",padx=55,pady=75)
 homeUsers_frame.pack(fill=BOTH,expand=True)
 create_user_buttons()

 HUtop_frame=LabelFrame(home_frame,borderwidth=0,bg="#043b82")
 HUtop_frame.pack(side=RIGHT,padx=50)

 #button to input what is in the containers of the device
 settings_button=Button(HUtop_frame,text="Settings",command=settings_window,\
 font=("Helvetica","12","bold"),fg="#043b82",bg="white",activeforeground="white",activebackground="#00a047")
 settings_button.pack(fill=BOTH)

 #button to exit the program
 off_button=Button(HUtop_frame,text="Log off",command=root.quit,\
 font=("Helvetica","12","bold"),fg="#043b82",bg="white",activeforeground="white",activebackground="#00a047")
 off_button.pack(fill=BOTH)

 root.mainloop()

if __name__ == '__main__':
 def restart_program():
 root.destroy()
 start_gui()
 start_gui()

	Acknowledgements
	Foreword
	Index
	Work distribution
	Functionality & Design Research results
	Risk assessment
	Table for risk analysis
	Mechanical risks
	Embedded risks

	Product delimitation and Choice benefit analysis (Abdallah)
	Design
	Dispensing Mechanisms ideation
	Technology choice
	Microcontroller
	Motors
	Stepper Motor Driver Selection
	Selected Motor and Driver
	Motor control
	Running the motors

	Electrical components
	Electric circuits
	Pump
	Motors
	Microcontroller

	Material choices
	Graphical User Interface
	Language
	GUI Toolkits
	PYQT
	Tkinter
	Kivy

	Clock & Home screen
	Keyboard
	Window Organisation
	Database selection
	Layout and Formatting

	Phone Application
	Conclusion
	Bibliography
	Appendix
	Layout and Formatting

