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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Abstract 

To solve the problem of large time shifts between renewable energy supply and user demand, power-to-H2 is a well-known option. 
In this framework, previous studies have shown that the direct coupling of a photovoltaic array with an electrolyzer stack is a viable 
solution. However, these studies assumed perfectly known operating parameters to optimize the setup. Moreover, they focused on 
maximizing hydrogen and minimizing the energy loss, while the cost was not addressed. We have performed an optimization 
including uncertainty quantification (i.e. surrogate-assisted robust design optimization) for several locations with the Levelized 
Cost Of Hydrogen (LCOH) as objective. This paper provides the least sensitive design to uncertainties and shows which parameters 
are most affecting the variability of the LCOH for that design. The robust design optimization illustrates that the mean and standard 
deviation of the LCOH are non-conflicting objectives for the robust designs of all considered locations. The optimal robust design 
is established at the considered location with the highest average yearly solar irradiance, achieving a mean LCOH of 6.6 €/kg and 
a standard deviation of 0.72 €/kg. The discount rate uncertainty is the main contributor to the LCOH variation. Therefore, installing 
a PV-electrolyzer system in locations with a high average yearly solar irradiation is favorable for both the LCOH mean and standard 
deviation, while de-risking the technology has the highest impact on further reducing the LCOH variation. Future works will focus 
on including accurate probability distributions and adding batteries to the system. 
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Nomenclature 

Symbols     Acronyms 
aH2O water activity    DDO Deterministic Design Optimization 
G Irradiance, W/m2    LCOH Levelized Cost Of Hydrogen, €/kg 
I current, A     RDO Robust Design Optimization 
m mass, kg     UQ Uncertainty Quantification 
N number of electrolyzer units   
r discount rate    Subscripts 
T temperature, K    elec electrolyzer 
U voltage, V    lim limiting 

1. Introduction 

PhotoVoltaic (PV) systems are the fastest growing renewable energy technology in the world (> 50 GW annually) 
[1,2]. Therefore, next to wind energy technologies, solar PV systems are considered the main technology for large-
scale renewable energy harvesting [2]. However, with solar energy being an intermittent energy source, PV systems 
are in need of energy storage to comply with time-flexible energy demand. Batteries are not appropriate for large-scale 
energy storage, due to their high energy leakage (1%-5% per hour) and low energy density compared to chemical 
storage [3]. To overcome these drawbacks, interest is growing to use hydrogen as an energy carrier [3]. By using solar 
energy to generate hydrogen in a PV-electrolyzer system [4-6], a viable solution is provided to store excess solar 
energy.  To ensure an optimal operating point of the PV-electrolyzer system in conventional designs, Maximum Power 
Point Tracking (MPPT) and DC-DC converters are used as an indirect coupling solution. However, direct coupling 
avoids the use of this expensive equipment, resulting in a reduction of both cost and complexity [4]. 

In a directly coupled PV-electrolyzer system, maximizing the hydrogen production and minimizing the excess 
power production are commonly selected objectives [4,6,7]. While the latter is only an alternative for cost 
optimization, the Levelized Cost Of Hydrogen (LCOH) gives an explicit indication of the economic performance of 
the system [8]. To achieve an optimal PV-electrolyzer design, multi-objective Deterministic Design Optimization 
(DDO) is frequently applied [9,10]. Common DDO techniques applied to a PV-electrolyzer system are Genetic 
Algorithm (GA), Particle Swarm Optimization (PSO) and Imperialist Competitive Algorithm (ICA) [7].  

Previously mentioned DDO methods assume exact model parameters. However, in real-life applications, technical 
and economic parameters are often subject to uncertainties. To quantify the variation in the system objective due to 
uncertain inputs (i.e. Uncertainty Quantification (UQ)), non-intrusive Polynomial Chaos Expansion (PCE) is one of 
the most used techniques [11]. By using PCE to acquire accurate statistics, surrogate-assisted Robust Design 
Optimization (RDO) aims to provide a design that is least sensitive to input variations. RDO gained much attention in 
many fields, including structural dynamics, aerospace, automobile and telecommunications [12]. 

This paper covers the modelling of the directly coupled PV-electrolyzer system, followed by the DDO, RDO and 
UQ results. As case-to-case uncertainty is considered, this paper provides a robust solution for the system. 

2. System modelling 

In this section, the PV-electrolyzer model and the considered locations are introduced. Thereafter, the optimization 
and uncertainty quantification are described, which aim to achieve optimal operating conditions under uncertainties. 

2.1. PhotoVoltaic (PV) system and electrolyzer stack 

A single diode model without parallel resistance is considered to represent a PV cell [13]. To characterize the PV 
cell behavior, we used the model presented by González-Longatt [14], which is a simplification of the model of Gow 
and Manning [15]. For the electrolyzer, a Proton Exchange Membrane (PEM) electrolyzer is selected, by reason of its 
fast response time (< 1 s) and full operational flexibility [16]. The implemented PEM model is described in [4]. 

http://crossmark.crossref.org/dialog/?doi=10.1016/j.egypro.2019.01.405&domain=pdf
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2.2. Climate data 

To analyze the effect of various climates, we used hourly solar irradiance and temperature data for one year in 
Johannesburg, San Francisco and Bern [17]. These locations receive an average solar irradiance of 2302 kWh/m2/y, 
1842 kWh/m2/y and 1243 kWh/m2/y respectively, with an average ambient temperature of 16℃,14.2℃ and 10.7℃. 

2.3. Design optimization and Uncertainty Quantification (UQ)  

To achieve the optimal system configuration, the electrolyzer cells in series Ns and parallel Np [4], the water activity 
aH2O [4] and electrolyzer operating temperature Telec [16] are selected as design parameters: 

2s p H O elec1 30                1 30                0.1 3                50 C 80 CN N a T       ° °           (1) 

To measure the system productivity, the hydrogen production will be quantified, while the Levelized Cost Of 
Hydrogen (LCOH) will give an indication on the system economics. To define the electrolyzer stack configuration 
that achieves the optimal hydrogen production and LCOH, Deterministic Design Optimization (DDO) will be 
performed, using the improved Nondominated Sorting Genetic Algorithm [18]. Next to the design parameters, several 
other technical and economic system parameters are considered (Table 1). Despite that these parameters are considered 
fixed in DDO, they are uncertain during real-life operation, affecting the LCOH output. To quantify the effect of these 
uncertainties on the output, Uncertainty Quantification (UQ) is performed. The UQ is done by non-intrusive 
Polynomial Chaos Expansion (PCE) [19], as this technique achieves accurate statistics in less computational time than 
the conventional Monte Carlo simulation technique. Moreover, PCE defines the contribution of each input parameter 
to the output variation through Sobol’ indices, resulting in the most contributing parameters to the output variation. 
By using PCE to acquire the statistics, surrogate-assisted Robust Design Optimization (RDO) aims to optimize the 
mean and variation of the LCOH. Consequently, RDO will define a system design that achieves an LCOH that is least 
sensitive to uncertainties.  

Table 1. The parameters, deterministic values and ranges considered in the optimization procedure. 

Parameters Deterministic value Range 

CAPEXPV 780 €/kW [20] 260-1300 €/kW [20] 

OPEXPV 17.5 €/kW/y [20] 16-19 €/kW/y [20] 

Lifetime PV, nPV 25 y [20] 20-30 y [21] 

CAPEXELEC 1750 €/kW [16] 1400-2100 €/kW [16] 

OPEXELEC 4% [16] 3-5% [16] 

Lifetime electrolyzer, nELEC 80,000 h [16] 60,000 – 100,000  h [16] 

Discount rate, r 6 % [22] 2-10% [23] 

Short-circuit current/temperature coefficient, μIsc 0.065 A/K [24] 0.050 – 0.080 A/K [24] 

Open-circuit voltage/temperature coefficient, μVoc 0.080 V/K [24] 0.070 – 0.090 V/K [24]  

Short-circuit current, Isc 3.80 A [24] 3.79 A – 3.81 A [24] 

Open-circuit voltage, Voc 21.06 V [24] 21.05 – 21.07 V [24] 

Diffusion current electrolyzer, i0 1e-5 A/cm2 [4] +/- 2% [25] 

Limiting current electrolyzer, ilim 2 A/cm2 [4] +/- 2% [25] 

Ambient temperature, T climate parameter +/- 0.5℃ [17] 

Solar irradiance, G climate parameter +/- 7% [17] 

Operating temperature electrolyzer, Telec design parameter +/- 1℃ [26] 

Water activity, aH2O design parameter +/- 2.5% [27] 
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3. Results and discussion 

To illustrate the effect of the considered locations on the optimal hydrogen production and LCOH, we performed 
first a DDO process. By including the parameter uncertainties, we used surrogate-assisted RDO to find the design that 
achieves the lowest LCOH variation. To illustrate how the LCOH variation can be further reduced in this most robust 
design, we highlight the parameters that contribute most to the LCOH variation through UQ.   

3.1. Deterministic Design Optimization (DDO) results 

To achieve the optimal hydrogen production and LCOH while assuming no uncertainty on the model parameters, 
a multi-objective DDO has been performed. For all locations, the results show a clear trade-off between LCOH and 
hydrogen production (Fig. 1a,1c,1e). Clearly, Johannesburg achieves the best LCOH and hydrogen production, as it 
is exposed to the highest yearly solar irradiation for the compared locations. The configurations that achieve the 
highest hydrogen production differ in the number of parallel strings (Table 2), where the amount of parallel strings 
increases with the average yearly solar irradiance. To achieve a minimum LCOH, significantly fewer parallel strings 
are installed compared to the maximum hydrogen production designs. Due to less parallel strings in the minimum 
LCOH designs, the U-I characteristic slope deviates from the optimal hydrogen producing characteristic slope, 
resulting in a system operating out of the frequent Maximum Power Points (MPPs) (Fig. 1b,1d,1f). Therefore, lower 
power is transferred to the electrolyzers, resulting in a lower hydrogen production. Nevertheless, due to the reduced 
amount of electrolyzer units installed, the electrolyzer CAPEX is limited, resulting in the optimal LCOH eventually. 

 

Fig. 1. A clear trade-off is visible between hydrogen production and Levelized Cost Of Hydrogen (LCOH) (a,c,e). As the electrolyzer stack 
configuration that achieves the minimum LCOH operates further out of the Maximum Power Points (MPPs) of the PV system (b,d,f), lower power 
is transferred to the electrolyzer stack, resulting in a lower hydrogen production. However, due to the reduced amount of electrolyzer units installed, 
the CAPEX decreases, resulting in the optimal LCOH. The grey dots in (b,d,f) correspond to the occurring of the MPPs during the year, where a 
white dot corresponds to not occurred, and a black dot corresponds to occurred most frequently. 
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uncertainties on the output, Uncertainty Quantification (UQ) is performed. The UQ is done by non-intrusive 
Polynomial Chaos Expansion (PCE) [19], as this technique achieves accurate statistics in less computational time than 
the conventional Monte Carlo simulation technique. Moreover, PCE defines the contribution of each input parameter 
to the output variation through Sobol’ indices, resulting in the most contributing parameters to the output variation. 
By using PCE to acquire the statistics, surrogate-assisted Robust Design Optimization (RDO) aims to optimize the 
mean and variation of the LCOH. Consequently, RDO will define a system design that achieves an LCOH that is least 
sensitive to uncertainties.  

Table 1. The parameters, deterministic values and ranges considered in the optimization procedure. 

Parameters Deterministic value Range 

CAPEXPV 780 €/kW [20] 260-1300 €/kW [20] 

OPEXPV 17.5 €/kW/y [20] 16-19 €/kW/y [20] 

Lifetime PV, nPV 25 y [20] 20-30 y [21] 

CAPEXELEC 1750 €/kW [16] 1400-2100 €/kW [16] 

OPEXELEC 4% [16] 3-5% [16] 

Lifetime electrolyzer, nELEC 80,000 h [16] 60,000 – 100,000  h [16] 

Discount rate, r 6 % [22] 2-10% [23] 

Short-circuit current/temperature coefficient, μIsc 0.065 A/K [24] 0.050 – 0.080 A/K [24] 

Open-circuit voltage/temperature coefficient, μVoc 0.080 V/K [24] 0.070 – 0.090 V/K [24]  

Short-circuit current, Isc 3.80 A [24] 3.79 A – 3.81 A [24] 

Open-circuit voltage, Voc 21.06 V [24] 21.05 – 21.07 V [24] 

Diffusion current electrolyzer, i0 1e-5 A/cm2 [4] +/- 2% [25] 

Limiting current electrolyzer, ilim 2 A/cm2 [4] +/- 2% [25] 

Ambient temperature, T climate parameter +/- 0.5℃ [17] 

Solar irradiance, G climate parameter +/- 7% [17] 

Operating temperature electrolyzer, Telec design parameter +/- 1℃ [26] 

Water activity, aH2O design parameter +/- 2.5% [27] 
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3. Results and discussion 

To illustrate the effect of the considered locations on the optimal hydrogen production and LCOH, we performed 
first a DDO process. By including the parameter uncertainties, we used surrogate-assisted RDO to find the design that 
achieves the lowest LCOH variation. To illustrate how the LCOH variation can be further reduced in this most robust 
design, we highlight the parameters that contribute most to the LCOH variation through UQ.   

3.1. Deterministic Design Optimization (DDO) results 

To achieve the optimal hydrogen production and LCOH while assuming no uncertainty on the model parameters, 
a multi-objective DDO has been performed. For all locations, the results show a clear trade-off between LCOH and 
hydrogen production (Fig. 1a,1c,1e). Clearly, Johannesburg achieves the best LCOH and hydrogen production, as it 
is exposed to the highest yearly solar irradiation for the compared locations. The configurations that achieve the 
highest hydrogen production differ in the number of parallel strings (Table 2), where the amount of parallel strings 
increases with the average yearly solar irradiance. To achieve a minimum LCOH, significantly fewer parallel strings 
are installed compared to the maximum hydrogen production designs. Due to less parallel strings in the minimum 
LCOH designs, the U-I characteristic slope deviates from the optimal hydrogen producing characteristic slope, 
resulting in a system operating out of the frequent Maximum Power Points (MPPs) (Fig. 1b,1d,1f). Therefore, lower 
power is transferred to the electrolyzers, resulting in a lower hydrogen production. Nevertheless, due to the reduced 
amount of electrolyzer units installed, the electrolyzer CAPEX is limited, resulting in the optimal LCOH eventually. 

 

Fig. 1. A clear trade-off is visible between hydrogen production and Levelized Cost Of Hydrogen (LCOH) (a,c,e). As the electrolyzer stack 
configuration that achieves the minimum LCOH operates further out of the Maximum Power Points (MPPs) of the PV system (b,d,f), lower power 
is transferred to the electrolyzer stack, resulting in a lower hydrogen production. However, due to the reduced amount of electrolyzer units installed, 
the CAPEX decreases, resulting in the optimal LCOH. The grey dots in (b,d,f) correspond to the occurring of the MPPs during the year, where a 
white dot corresponds to not occurred, and a black dot corresponds to occurred most frequently. 
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Table 2. To achieve maximum hydrogen production, the number of parallel strings is the only parameter that differs over the considered locations. 
The number of parallel strings is significantly reduced to achieve the minimum LCOH in each location. 

Location Ns Np aH2O Telec [℃] 

Maximum hydrogen production 

Johannesburg 

 

11 

 

17 

 

1.0 

 

50.0 

California 11 12 1.0 50.0 

Bern 11 10 1.0 50.0 

Minimum LCOH 

Johannesburg 

 

10 

 

3 

 

1.0 

 

50.0 

California 10 3 1.0 50.0 

Bern 10 3 1.0 50.0 

 

 

Fig. 2. For each location, the optimal LCOH mean is found at the lowest standard deviation. This means that the LCOH mean and standard deviation 
are non-confronting parameters, and no Pareto front exists (a,c,e). The location with the highest average yearly solar irradiance (i.e. Johannesburg) 
achieves the lowest LCOH mean and standard deviation for all considered locations (b,d,f). Therefore, the PV-electrolyzer system in Johannesburg 
achieves the best LCOH mean with the highest probability. The grey dots in (a,c,e) present the evolution of the optimizer towards convergence, 
while the black dot is the converged result.    

3.2. Surrogate-assisted Robust Design Optimization (RDO) results  

While DDO assumes exact parameter values, the surrogate-assisted RDO algorithm considers uncertainties on the 
design and model parameters. The mean μLCOH and standard deviation σLCOH for the LCOH is determined using PCE 
for each stochastic design sample. Based on these statistics, the optimizer looks for a design sample that minimizes 
both objectives (or a Pareto set of design samples when the objectives are conflicting). When convergence is reached, 
μLCOH and σLCOH appear to be non-conflicting objectives. As a result, the most robust design achieves the optimal mean 
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LCOH as well (Fig 2a,2c,2e). When comparing the locations, Johannesburg achieves the lowest μLCOH equal to 6.6 
€/kg, wit  t e lowest σLCOH of 0.72 €/kg   ig. 2b,2d,2f . T erefore, installing a PV-electrolyzer system in locations 
with a high average yearly solar irradiation is favorable for both the mean and standard deviation of LCOH.   

3.3. Uncertainty Quantification (UQ) results  

While the surrogate-assisted RDO process delivers the design that is least sensitive to uncertainties, Uncertainty 
Quantification (UQ) is used to provide the contribution of each input parameter to the LCOH variation. To achieve 
accurate statistics at a tolerable computational cost, Polynomial Chaos Expansion (PCE) is used in the UQ process. 
Compared to a reference result achieved by Monte Carlo Simulation, a PCE order of 3 achieves moments with an 
error below 0.01% on the mean and 0.1% on the variance. When applied to the most robust design, t e Sobol’ indices 
illustrate the contribution of each parameter to the LCOH variation. Clearly, the discount rate r and CAPEX 
parameters are the main parameters inducing the LCOH variation (Fig. 3). Therefore, restricting the discount rate 
range, by de-risking the technology or having more demonstrating projects, is concluded to be the most significant 
action to further reduce the LCOH variation in the most robust design. 

 

Fig. 3. The Sobol’ indices indicate t at t e LCOH variation is mainly dominated by the discount rate r and CAPEX parameters.  

4. Conclusion 

PV systems need energy carriers to comply with the time-flexible energy demand. By combining a PV-system with 
an electrolyzer stack, a viable storage system is provided. Optimizing the electrolyzer stack configuration in terms of 
hydrogen production and LCOH results in a Pareto set of optimal solutions. The location with the highest average 
yearly solar irradiance results in the optimal hydrogen production or LCOH. When including the model parameter 
uncertainties, the surrogate-assisted RDO results show that the LCOH mean and standard deviation are non-conflicting 
parameters. Moreover, the location with the highest average yearly solar irradiance results in the minimum LCOH 
mean (6.6 €/kg) and standard deviation (0.72 €/kg). Therefore, installing a PV-electrolyzer system in locations with a 
high average yearly solar irradiation is favorable for both the mean and standard deviation of LCOH. When analyzing 
the contribution of each system parameter individually to the LCOH variation of the most robust design, the UQ 
process demonstrated the major contribution of the discount rate. Therefore, de-risking the technology or promoting 
more demonstration projects is the main action to further decrease the LCOH variation. Future works will focus on 
including accurate probability distributions and adding batteries to the system. 
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for each stochastic design sample. Based on these statistics, the optimizer looks for a design sample that minimizes 
both objectives (or a Pareto set of design samples when the objectives are conflicting). When convergence is reached, 
μLCOH and σLCOH appear to be non-conflicting objectives. As a result, the most robust design achieves the optimal mean 

 a  b 

 c  d 

 e  f 

 o annesburg

San  rancisco

 ern

6 D. Coppitters, W. De Paepe, F. Contino/ Energy Procedia 00 (2018) 000–000 

LCOH as well (Fig 2a,2c,2e). When comparing the locations, Johannesburg achieves the lowest μLCOH equal to 6.6 
€/kg, wit  t e lowest σLCOH of 0.72 €/kg   ig. 2b,2d,2f . T erefore, installing a PV-electrolyzer system in locations 
with a high average yearly solar irradiation is favorable for both the mean and standard deviation of LCOH.   

3.3. Uncertainty Quantification (UQ) results  

While the surrogate-assisted RDO process delivers the design that is least sensitive to uncertainties, Uncertainty 
Quantification (UQ) is used to provide the contribution of each input parameter to the LCOH variation. To achieve 
accurate statistics at a tolerable computational cost, Polynomial Chaos Expansion (PCE) is used in the UQ process. 
Compared to a reference result achieved by Monte Carlo Simulation, a PCE order of 3 achieves moments with an 
error below 0.01% on the mean and 0.1% on the variance. When applied to the most robust design, t e Sobol’ indices 
illustrate the contribution of each parameter to the LCOH variation. Clearly, the discount rate r and CAPEX 
parameters are the main parameters inducing the LCOH variation (Fig. 3). Therefore, restricting the discount rate 
range, by de-risking the technology or having more demonstrating projects, is concluded to be the most significant 
action to further reduce the LCOH variation in the most robust design. 

 

Fig. 3. The Sobol’ indices indicate t at t e LCOH variation is mainly dominated by the discount rate r and CAPEX parameters.  

4. Conclusion 

PV systems need energy carriers to comply with the time-flexible energy demand. By combining a PV-system with 
an electrolyzer stack, a viable storage system is provided. Optimizing the electrolyzer stack configuration in terms of 
hydrogen production and LCOH results in a Pareto set of optimal solutions. The location with the highest average 
yearly solar irradiance results in the optimal hydrogen production or LCOH. When including the model parameter 
uncertainties, the surrogate-assisted RDO results show that the LCOH mean and standard deviation are non-conflicting 
parameters. Moreover, the location with the highest average yearly solar irradiance results in the minimum LCOH 
mean (6.6 €/kg) and standard deviation (0.72 €/kg). Therefore, installing a PV-electrolyzer system in locations with a 
high average yearly solar irradiation is favorable for both the mean and standard deviation of LCOH. When analyzing 
the contribution of each system parameter individually to the LCOH variation of the most robust design, the UQ 
process demonstrated the major contribution of the discount rate. Therefore, de-risking the technology or promoting 
more demonstration projects is the main action to further decrease the LCOH variation. Future works will focus on 
including accurate probability distributions and adding batteries to the system. 

Acknowledgements 

The work has been performed in the scope of the GenComm project, funded by Interreg North-West Europe. 

 

C P  elec

OP  elec

C P  PV

 elec

 PV

 

4.6 

2 .9 

 .9 

 .9 

4.4 

0.2 

54.1 



1756 Diederik Coppitters et al. / Energy Procedia 158 (2019) 1750–1756
 D. Coppitters, W. De Paepe, F. Contino/ Energy Procedia 00 (2018) 000–000  7 

References 

[1]  Kumar Sahu B. A study on global solar PV energy developments and policies with special focus on the top ten solar PV power producing 
countries. Vol. 43, Renewable and Sustainable Energy Reviews. Pergamon; 2015. p. 621–34. 

[2] Breyer C, Bogdanov D, Gulagi A, Aghahosseini A, Barbosa LSNS, Koskinen O, et al. On the role of solar photovoltaics in global energy 
transition scenarios. Prog Photovoltaics Res Appl. 2017;25(8):727–45.  

[3] Khalilnejad A, Sundararajan A, Sarwat AI. Optimal design of hybrid wind/photovoltaic electrolyzer for maximum hydrogen production using 
imperialist competitive algorithm. J Mod Power Syst Clean Energy. 2017;6. 

[4] Maroufmashat A, Sayedin F, Khavas SS. An imperialist competitive algorithm approach for multi-objective optimization of direct coupling 
photovoltaic-electrolyzer systems. Int J Hydrogen Energy. 2014;39(33):18743–57. 

[5] García-Valverde R, Espinosa N, Urbina A. Optimized method for photovoltaic-water electrolyser direct coupling. Int J Hydrogen Energy. 
2011;36(17):10574–86. 

[6] Khalilnejad A, Abbaspour A, Sarwat AI. Multi-level optimization approach for directly coupled photovoltaic-electrolyser system. Int J 
Hydrogen Energy. 2016;41(28):11884–94. 

[7] Sayedin F, Maroufmashat A, Al-Adwani S, Khavas SS, Elkamel A, Fowler M. Evolutionary optimization approaches for direct coupling 
photovoltaic-electrolyzer systems. In: IEOM 2015 - 5th International Conference on Industrial Engineering and Operations Management, 
Proceeding. IEEE; 2015. p. 1–8. 

[8] Pinaud BA, Benck JD, Seitz LC, Forman AJ, Chen Z, Deutsch TG, et al. Technical and economic feasibility of centralized facilities for solar 
hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ Sci. 2013;6(7):1983. 

[9] De Paepe W, Abraham S, Tsirikoglou P, Contino F, Parente A, Ghorbaniasl G. Operational Optimization of a Typical micro Gas Turbine. In: 
Energy Procedia. 2017. p. 1653–60.  

[10] Tsirikoglou P,  bra am S, Contino  ,  ağci Ö, Vierendeels  , G orbaniasl G. Comparison of meta euristics algorit ms on robust design 
optimization of a plain-fin-tube heat exchanger. In: 18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston, 
Virginia: American Institute of Aeronautics and Astronautics; 2017. 

[11] Abraham S, Raisee M, Ghorbaniasl G, Contino F, Lacor C. A robust and efficient stepwise regression method for building sparse 
polynomial chaos expansions. J Comput Phys. 2017; 332:461–74.  

[12] Chatterjee T, Chakraborty S, Chowdhury R. A Critical Review of Surrogate Assisted Robust Design Optimization. Archives of 
Computational Methods in Engineering. 2017 Jul 13;1–30.  

[13] Rauschenbach HS. Solar cell array design handbook: the principles and technology of photovoltaic energy conversion. 2012. 
[14] González-Longatt FM. Model of P otovoltaic Module in Matlab™. 2do congresoı beroamerı cano de estudıantes de ıngenıería eléctrıca, 

electrónıca y computacıón. 2005;1-5. 
[15] Gow J, Manning CD. Development of a photovoltaic array model for use in power-electronics simulation studies. IEE Proc - Electr Power 

Appl. 1999;146(2):193. 
[16] Buttler A, Spliethoff H. Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and 

power-to-liquids: A review. Vol. 82, Renewable and Sustainable Energy Reviews. 2018. p. 2440–54. 
[17] Meteotest. Handbook part II: Theory. Global Meteorological Database Version 7. Software and Data for Engineers, Planers and Education. 

2017. 
[18] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput. 

2002;6(2):182–97. 
[19] Sudret B. Polynomial chaos expansions and stochastic finite-element methods. Risk and Reliability in Geotechnical Engineering. 2014. 265-

300 p. 
[20] Reichenberg L, Hedenus F, Odenberger M, Johnsson F. The marginal system LCOE of variable renewables – Evaluating high penetration 

levels of wind and solar in Europe. Energy. 2018;152:914–24. 
[21] Branker K, Pathak MJM, Pearce JM. A review of solar photovoltaic levelized cost of electricity. Vol. 15, Renewable and Sustainable Energy 

Reviews. 2011. p. 4470–82. 
[22] Rajeshwar K, McConnell RD, Licht S. Solar Hydrogen Generation: Toward a Renewable Energy Future. Springer; 2008. 329 p. 
[23] Rodriguez CA, Modestino MA, Psaltis D, Moser C. Design and cost considerations for practical solar-hydrogen generators. Energy Environ 

Sci. 2014;7(12):3828–35. 
[24] SOLAREX. MSX-60 and MSX-64 Photovoltaic Modules. 
[25] García-Valverde R, Espinosa N, Urbina A. Simple PEM water electrolyser model and experimental validation. In: International Journal of 

Hydrogen Energy. Pergamon; 2012. p. 1927–38. 
[26] Segura F, Bartolucci V, Andújar JM. Hardware/software data acquisition system for real time cell temperature monitoring in air-cooled 

polymer electrolyte fuel cells. Sensors (Switzerland). 2017;17(7):1600. 
[27] Sur R, Boucher TJ, Renfro MW, Cetegen BM. In Situ Measurements of Water Vapor Partial Pressure and Temperature Dynamics in a PEM 

Fuel Cell. J Electrochem Soc. 2010;157(1):B45. 
 


