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Abstract 14 

Background: Diversifying animal cultivation demands efficient genotyping for enabling genomic 15 

selection, but non-model species lack efficient genotyping solutions. The aim of this study was to 16 

optimize a genotyping-by-sequencing (GBS) double-digest RAD-sequencing (ddRAD) pipeline. Bovine 17 

data was used to automate the bioinformatic analysis. The application of the optimization was 18 

demonstrated on non-model European whitefish data. 19 

Results: DdRAD data generation was designed for a reliable estimation of relatedness and is scalable to 20 

up to 384 samples. The GBS sequencing yielded approximately one million reads for each of the around 21 

100 assessed samples. Optimizing various strategies to create a de-novo reference genome for variant 22 

calling (mock reference) showed that using three samples outperformed other building strategies with 23 

single or very large number of samples. Adjustments to most pipeline tuning parameters had limited 24 

impact on high-quality data, except for the identity criterion for merging mock reference genome 25 

clusters. For each species, over 15k GBS variants based on the mock reference were obtained and 26 

showed comparable results with the ones called using an existing reference genome. Repeatability 27 

analysis showed high concordance over replicates, particularly in bovine while in European whitefish 28 

data repeatability did not exceed earlier observations. 29 

Conclusions: The proposed cost-effective ddRAD strategy, coupled with an efficient bioinformatics 30 

workflow, enables broad adoption of ddRAD GBS across diverse farmed species. While beneficial, a 31 

reference genome is not obligatory. The integration of Snakemake streamlines the pipeline usage on 32 

computer clusters and supports customization. This user-friendly solution facilitates genotyping for both 33 

model and non-model species. 34 

 35 
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Background 38 

Humans have successfully domesticated over five hundred animal species, and the number of newly 39 

cultivated species has been increasing by at least ten species per year [1,2]. Particularly in recently 40 

domesticated species, our understanding of their genetic diversity and the genetic basis of traits may be 41 

insufficient. Genome wide data and genomic selection have revolutionized animal breeding by 42 

improving productivity [3–5], as well as incorporating health and welfare traits [6,7]. In genomic 43 

selection, thousands of DNA markers are used to predict the genomic breeding value of an individual 44 

[8,9], but genotyping presents a significant challenge for rare or novel production species. A recent 45 

review of genome data [10] revealed that nearly half of the aquaculture species, with an annual 46 

production exceeding 350 million kg [11], lack reference genome information, which together with 47 

genetic polymorphism characterization is a necessary resource for the development of commercial SNP-48 

chip platforms or targeted genotyping-by-sequencing solutions. Therefore, it is crucial to make cost-49 

effective and reliable alternative genotyping methods widely available for non-model organisms to 50 

advance genomic selection and stock management in niche production species. 51 

The advantage of genome-assisted breeding value estimation largely stems from reliable estimation of 52 

relationships [12] and a common genomic selection approach is directly based on the genomic 53 

relationship matrix (GRM), which estimates the proportion of the genome shared identical by descent 54 

between pairs of individuals. This method does not require a genomic map or a reference genome and 55 

performs well even with low marker densities (10 SNPs per morgan) [13]. However, additional markers 56 

are beneficial and, for example, in Atlantic salmon, densities up to 50 to 200 markers per morgan (1 000 57 

to 5 000 markers in total) have been recommended [4,14]. The accuracy and cost-effectiveness of 58 

genomic selection depend on the balance between the number of genotyped markers and individuals, 59 

with marker numbers of 1 000 to 2 000 SNPs being suggested [15].  60 
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Genotyping-by-sequencing (GBS) [16] is a cost-effective approach for simultaneous genome-wide SNP 61 

discovery and genotyping without prior knowledge of the genome sequence. Restriction-site associated 62 

DNA sequencing (RAD) [17–19]	and double-digest RAD-sequencing (ddRAD) [20,21] are reduced-63 

representation genome sequencing methods that target a small portion of the genome using restriction 64 

enzymes. These methods can generate sequencing-libraries from hundreds to hundreds of thousands of 65 

fragments genome wide. Both wet lab protocols and parameters used in post-sequencing analysis 66 

impact the number of recovered reads, mean sequencing target coverage, recovered genetic 67 

loci/marker, and genotype completeness and accuracy [20]. While the number of polymorphic markers 68 

is the main concrete criterion for evaluating the suitability of a genotyping method for genomic 69 

selection, the actual genotyping goal of reliable estimation of relatedness might be influenced by the 70 

minor allele frequencies (MAF), codominant or mendelian inheritance and repeatability. GBS variants 71 

typically have a lower call rate per sample and repeatability among sample sets compared to SNP arrays. 72 

Additionally, genotyping errors, especially allelic dropouts (as false homozygotes), can introduce bias in 73 

the relatedness estimates used in genomic selection [22]. However, optimized GBS pipelines can exhibit 74 

high consistency with SNP-chip data [23]. 75 

Hence, the primary objective of this study was to optimize the GBS method ddRAD and fine-tune the 76 

bioinformatic pipeline parameters for processing and controlling of the high-quality SNP data for 77 

genomic selection in non-model species. The second objective was to test the repeatability of the data 78 

generation. We fine-tuned the bioinformatics pipeline parameters by utilizing dairy cattle GBS and 79 

whole-genome resequencing (WGS) data. Following this, we applied the established data processing 80 

routines on data generated for European whitefish (Coregonus lavaretus L) using the available reference 81 

genome of the closest relative Coregonus supersum ‘balchen’ [24]. European whitefish is the second 82 

most important farmed fish species in Finland [25,26]. It is also a species used in ecological studies and it 83 

is known to have undergone widespread phylogeographic structuring and the repeated evolution of 84 
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distinct ecological ecotypes [27]. The overarching objective was to make the GBS method simpler to use 85 

across diverse species, eliminating the need for extensive bioinformatics expertise or specialized units. 86 

This advancement holds the potential to enhance genomic selection and refine animal breeding 87 

practices, particularly within less studied species. 88 

Results 89 

Restriction enzyme selection in silico 90 

The numbers of double digested genome fragments within the range of 150-400 bp and consequently 91 

the expected variant numbers were three to four times more strongly influenced by the choice of the 92 

enzyme pair than by the species assessed (Figure 1). The predicted fragment numbers fulfilled the 93 

preset criteria for all enzyme pairs, the number of fragments being the lowest for the EcoRI;SphI pair, 94 

with approximately 25 – 50 thousand fragments (or 20 – 40 thousand estimated variants). The reference 95 

genome based fragment numbers for the two main targets, Bos taurus (ARS-UCD1.2), and Coregonus 96 

supersum (AWG_v2), were for the pair EcoRI;SphI 50 000 and 30 000, for the pair EcoRI;MspI 120 000 97 

and 110 000, for the pair MluCI;SphI 270 000 and 230 000, for the pair EcoRI;MseI 380 000 and 180 000, 98 

for the pair EcoRI;NlaIII 440 000 and 200 000, respectively. The predicted fragment number for the 99 

EcoRI;SphI pair was within the desired range of 10 000 – 100 000 fragments, which was expected to 100 

provide a minimum of 5 000 relatedness informative variants. Moreover, this enzyme pair provided the 101 

most uniform distribution of fragments across the size range, reducing the size selection lab protocol 102 

choice to the decision of window width (Figure 1). The EcoRI;SphI pair was the most optimal for all the 103 

currently assessed species.  104 

 105 
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a)  106 

b)  107 

c)  108 

 109 

Figure 1. In silico comparison of enzyme pairs. Expected variant numbers across the species and 110 
assessed restriction enzyme pairs (a), where whiskers indicate the impact of symmetric widening or 111 
narrowing the fragment size range by 100 bp. The predicted frequency distribution of double digested 112 
template fragments of different sizes in Bos taurus (b) and Coregonus sp. (c) averaged over 50 bp 113 
window across fragment sizes from 100 to 1 000 bp. The grey area denotes the included size range (150 114 
– 400 bp).  115 
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 116 

Raw GBS and WGS sequencing data 117 

GBS sequencing of 36 cow libraries generated in total 43 109 115 PE reads of 2x75 bp in length, with an 118 

average of 1 197 475 PE reads per sample. After trimming, 39 730 518 PE reads remained (avg: 1 103 119 

625 reads per sample). Sample details are listed in Table S1. In case of the 66 whitefish libraries 120 

sequenced, from the total of 78 577 269 PE reads of 2x75 bp in length (avg: 1 190 565 reads per sample) 121 

71 655 413 reads passed the quality control trimming (avg: 1 086 688 reads per sample). After quality 122 

control, the average read length dropped to 66 bp for reads R1 and 60 bp for reads R2. 123 

WGS sequencing of 12 cow samples generated in total 3 918 912 122 PE reads of 2x150 bp in length, 124 

with an average of 326 659 344 PE reads per sample. After trimming, 3 865 355 653 PE reads remained 125 

with average of 322 112 971 reads per sample. 126 

GBS fragment recovery 127 

The mapping of the quality-trimmed GBS derived cow data against the non-size selected in-silico 128 

(EcoRI;SphI) digested Bos taurus (ARS-UCD1.2) reference genome indicated that about 86% of the reads 129 

aligned to fragments within the 150 - 400 bp size range (Figure 2). This alignment window was narrower 130 

than the expected full insert size range of 150-550 bp. The in-silico digestion simulation generated in 131 

total 66 450 genome fragments between 150 and 400 bp in length. Considering that the remaining 14% 132 

of the reads were outside this span, our mock reference was expected to have between 66 450 and 79 133 

100 clusters. 134 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 4, 2023. ; https://doi.org/10.1101/2023.10.03.560633doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.03.560633
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

   
 

135 
Figure 2: Distribution of quality-trimmed cow GBS reads across in-silico digested Bos taurus (ARS-136 

UCD1.2) reference genome fragment lengths. Red vertical lines indicate the boundaries of the estimated 137 

effective fragment size. 138 

 139 

Mock reference quality 140 

The construction of a mock reference relies on the defined data and parameter configurations. An 141 

evaluation against the size-selected in-silico digested reference, measuring average coverage 142 

percentages and secondary alignments (Figure S2), unveiled an over-inflation of the mock reference 143 

when utilizing all samples, resulting in the exclusion of mock-strategy 4. While focusing on one sample 144 

(mock-strategy 1 and 2) approximated the optimal cluster counts, it introduces the risk of sample-145 

specific biases in the mock reference. As a result, mock-strategy 3 emerged as the preferred choice. 146 

However, its advantage over mock-strategy 4 was reduced by the final mock refinement step, which 147 

curbed most of the excessive cluster inflation, as indicated by consistent alignment trends nearing the 148 

expectation value (Figure S2, gray box).  149 
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Adjustments to input data parameters had minimal impact on the mock reference. PE read merging 150 

using p-value thresholds (0.001, 0.01, 0.05) yielded consistent mock reference lengths and alignment 151 

percentages against the in-silico reference. Around 99.8% of the mock clusters aligned against the 152 

reference genome, accompanied by a modest number of unaligned clusters (417-900). Mock cluster 153 

counts and secondary alignments remained stable. Parameter pl (min. merged cluster length) showed 154 

negligible impact across reasonable values, aligning with expectations. Cluster generation parameters, 155 

especially the nucleotide similarity parameter (id), had, however, significant influence. Its extreme 156 

values led to drastic changes in the merged cluster numbers, while moderate values (e.g., 0.85) yielded 157 

expected alignments. The minimum cluster length (min) and read stitching optimization (rl) parameters 158 

had limited impact. Optimal parameters for the mock reference creation were p=0.05, pl=50, id=0.85, 159 

min=80 and rl=75 (Figure S3). 160 

For the mock refinement step, strict parameters (e.g., average 10 reads per sample per cluster, ≥10 161 

samples with aligned reads on cluster) appeared optimal for a stable variant set creation. Refined mock 162 

references exhibited improved alignment against the Bos taurus (ARS-UCD1.2) reference genome 163 

(dashed-line), although the average sample-wise alignment of data against the mock reference was 164 

slightly decreased for the refined mock compared to pre-refinement mock (Figure S4). 165 

Variant calling and GBS quality estimation 166 

Applying the GATK best practice variant calling pipeline to the full genome WGS data produced in total 167 

17 376 716 variants for the cow samples, with 42 160 variants intersecting regions on the reference 168 

genome that had a minimum coverage of three reads from the GBS data from at least 10 samples. 169 

Aligning GBS data to the reference genome (ARS-UCD1.2) resulted, after similar filtering, in 20 794 170 

variants. Calling variants using the pre-refinement mock reference, based on mock strategy 3, yielded 16 171 

404, and with refinement, 16 416 variants. In the case of GBS, we obtained a MAF of 0.26 (sd: 0.13) 172 
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using the mock reference and 0.27 (sd: 0.14) while using the reference genome. The average call rate 173 

using the GBS approach in combination with the ARS-UCD1.2 reference genome was 94.8%, with 174 

average 11.38 (sd: 0.75) samples per variant, respectively 11.37 (sd: 0.76) with using the created mock 175 

reference genome. For the WGS, we observed for the 42 160 variants a MAF of 0.21 (sd: 0.14) with a call 176 

rate of 99.9% with 11.99 (sd: 0.13) samples having called each variant on average.  177 

The overlap of reference based GBS and WGS variant sets, defined by their chromosomal positions, 178 

comprised 18 196 loci, representing approximately 87.5% alignment between the GBS and WGS 179 

datasets. These variants exhibited a WGS-based MAF of 0.26 (sd: 0.13) and nearly 100% call rate (sd: 180 

0.05). On a chromosomal level, GBS-set missingness ranged from 9% to 15%, with a notable exception of 181 

the X-chromosome displaying over 30% missingness (Figure S5). Sample-wise genotype concordance 182 

between GBS and WGS data ranged from 82.6% to 97.5% (mean: 93.3%). A mere 1.3% of GBS-called 183 

homozygous variants were identified as heterozygous in the WGS dataset, and only 0.2% of 184 

heterozygous GBS variants were classified as homozygous in the WGS dataset. In total, 2 598 (12.5%) 185 

GBS variants were exclusive to the GBS call set, while 23 964 (56.8%) WGS variants were absent from 186 

the GBS (Table S2) variants.    187 

Evaluating GBS based variant data for its ability to recover the realized relatedness matrix derived from 188 

>10 million bovine SNPs in the full genome data showed a convergence of both. With approximately 189 

1 000 variants the matrices approach equivalence, as indicated by the eigenvalue distance dropping 190 

from >1 to approximately 0.15 (Figure 3). After this point, the GBS genotype-based matrices exhibited a 191 

slower convergence compared to the WGS-based counterpart. Results suggested that about 5 000 GBS 192 

markers equate to 2 000 WGS-derived SNP markers, fulfilling genomic selection needs. 193 
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 194 

Figure 3. Evolution of eigenvalue distances as a function of the number of utilized DNA variants. The plot 195 
compares the distance between GRM matrix based on all whole genome sequence (WGS) derived 196 
variants and smaller variant subsamples from mock/reference GBS or WGS data. The plot displays the 197 
mean and 90% confidence intervals, generated from 1 000 bootstrapped resampling. Variant counts 198 
range from 50 to 30 000, encompassing the full GBS sample sets. The Y-axis is log-transformed to 199 
enhance visibility of differences. 200 

Proof of concept using non-model European whitefish species as an 201 

example 202 
 203 

The European whitefish mock reference created by strategy 3, following the optimized mock creation 204 

parameters, was comprised of 159 403 clusters, spanning around 26 million bp, and suggested an 205 

average 4x – 8x fold read coverage. While shallow sequenced samples exhibited low coverage (4x), most 206 

samples demonstrated acceptable coverage (8x) against the created mock reference. Aligning the mock 207 

reference to the Coregonus sp. ‘balchen’ reference genome (AWG_v2) resulted in a coverage of 34 208 

million bp due to multiple mapping, with alignment rates around 90% for quality-filtered PE reads 209 

against the mock reference and slightly higher (91%) against the AWG_v2 reference genome. 210 
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Using an in-silico prediction for a 150-400 bp fragment size threshold led to 28 085 fragments and an 211 

approximate 80% alignment rate against this reference. Employing the mock reference facilitated calling 212 

18 678 GBS variants, with a stable missingness below 5-7% for samples with over 1 million reads. 213 

Similarly, the existing reference genome enabled calling 23 275 GBS variants with a comparable stable 214 

missingness.  215 

Genomic relatedness estimates between parent and offspring in whitefish trios averaged 0.53 (ranging 216 

0.47 - 0.57) with the AWG_v2 reference genome data, and 0.49 (0.43-0.54) with the mock reference 217 

data aligning with the expectations [28]. Respectively, genomic relatedness among the parental fish 218 

averaged 0.09 ranging from -0.05 to 0.53 or averaging 0.08 and ranging from -0.04 to 0.49. Unrelated 219 

fish exclusively formed mated pairs (all relatedness estimates <0.05), aligning with expectations. Rare 220 

non-Mendelian inheritance, consistent across families, occurred in 3.3% (333.2 GBS variants on average) 221 

of the loci variable within the trios using AWG_v2 reference genome data and 3.4% (263.8 GBS variants 222 

on average) with mock reference data. Repeated Mendelian errors shared among loci were slightly 223 

smaller in the reference genome data (14.0%, 202 variants) compared to the mock reference data 224 

(14.8%, 167 variants). Both data sets exhibited similar estimates with a maximum absolute relatedness 225 

difference of 0.045 and generally agreed with prior pedigree knowledge. 226 

Repeatability 227 
The repeatability assessment in bovine encompassed three separate runs: two utilizing 250 ng DNA 228 

(Orig- and RepI-set) and one employing 500 ng DNA (RepII-set) as starting material. All three sets 229 

underwent the same wet lab and optimized bioinformatic protocol using the ARS-UCD1.2 reference 230 

genome. The initial pipeline optimization run for the Orig-set yielded 20 794 GBS variants while the 231 

RepI-set and the RepII-set produced 19 066 and 19 988 GBS variants, respectively. Analyzing variant 232 

locations revealed a high degree of shared loci, with the RepI-set displaying 16 559 (79.6%) shared 233 

variants, and the RepII-set exhibiting 17 459 (84.0%) shared variants. Remarkably, the two repeated runs 234 
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shared 16 556 variants in common, resulting in a cumulative sharing of 15 246 (73.3%) variants across all 235 

three runs (Figure 4a). 236 

Within the whitefish dataset, a repeatability analysis encompassing two distinct scenarios for a subset of 237 

12 samples was performed. The first scenario involved technical replicates of identical libraries (Orig-set 238 

and Tech-set). In the second scenario, duplicate libraries were prepared from the same DNA samples 239 

(Rep-set). Dedicated pipeline runs for each set yielded 15 991 variants for the Orig-set, 16 025 variants 240 

for the Tech-set, and 12 253 variants for the Rep-set. Examination of intersecting variant locations 241 

highlighted a pronounced similarity between the Orig-set and Tech-set, sharing 13 561 (84.8%) loci. In 242 

contrast, the degree of sharing between the Orig-set and the Rep-set dropped to 6 110 (38.2%) and a 243 

similar value of 6 216 (38.8%) was observed for the Tech-set. Altogether, 5 725 variants were common 244 

to all three sets (Figure 4b). For the Orig-set as well as for the Rep-set the data aligned to the correct size 245 

selection range. However, the Rep-set had a slightly worse size range specificity but also less reads 246 

mapping to a few highly overrepresented sizes (Figure 4c). 247 

 248 

a)                                                                                  b) 249 
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c)  250 

Figure 4: Repeatability intersection Venn diagram. Left side a) Cattle, right side b) Whitefish, c) read 251 

frequency distribution of the two Whitefish repeats.  252 

Repeatability of individual variants at the whitefish sample level was also evaluated. For the 5 725 253 

overall shared variants, 44.4% to 93.0% variants were equally called among repeated individuals. In 254 

pairwise comparisons, Orig-Tech samples shared 93.0% equally called variants, for the Orig-Rep 255 

comparison, however, on the average only 44.8% and in the Tech-Rep 44.4% of the variants were called 256 

equally. For the 15 246 shared variants across the three independently repeated cow GBS runs we 257 

obtained, however, for all three pairwise comparisons an average repeatability of over 90%. 258 

Further, lift-over chains between the created mock references and the pre-existing reference genomes 259 

have been created to match variants called via the mock reference and those called by utilizing the pre-260 

existing reference genome. For cattle, 16 571 variants were called using the mock reference. In total, 13 261 

471 of these variants received successfully via lift-over a chromosomal location on the pre-existing 262 

reference genome. From these, 11 649 (>70%) intersected with the chromosomal location of variants 263 
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called by utilizing the reference genome. In case of whitefish, from the 13 376 called variants via mock 264 

reference 10 693 could be lift-overed to the reference genome, with 6 481 (48.5%) variants having a 265 

chromosomal match with variants called based on the pre-existing reference genome. 266 

Discussion  267 
We present here a GBS approach containing a refined ddRAD approach, where through the adaption of 268 

a published laboratory protocol [29] and the optimization and streamlining of the GBS sequencing data 269 

analysis steps utilizing the Snakemake workflow manager, we introduce a cost effective and robust 270 

genotyping procedure. RAD-Seq, since its inception by [17], has rapidly gained standing across diverse 271 

genetic research domains, spanning for example genetic map creation [14,30], mapping of production 272 

traits [31–33], population dynamics  [34], and generating SNP resources for SNP array development 273 

[31,35]. Particularly, GBS stands out as a valuable tool for generating markers in non-model species with 274 

limited genome information. Our work extends the prior experimental demonstration of the ddRAD GBS 275 

method to facilitate genomic selection and breeding planning, especially for less studied farmed species. 276 

We successfully applied the developed protocol in non-model species (European whitefish), 277 

demonstrating its versatility and effectiveness, albeit revealing some remaining challenges. 278 

The prevailing trend strongly favors incorporating bioinformatic workflow engines for robust pipeline 279 

implementations [36]. Snakemake [37], a widely adopted choice within the NGS field, was employed in 280 

our study to manage task dependencies, to reduce redundant computations upon pipeline re-execution, 281 

and to facilitate automated deployment, including integration with the slurm workload manager on our 282 

cluster. The native docker and singularity support enabled seamless utilization and versioning of 283 

necessary software tools. With a single command, the pipeline execution is initiated, channeling outputs 284 

into a well-organized main folder with structured subfolders housing the resultant analyses. This 285 

comprehensive strategy ensures full reproducibility and user-friendliness, accommodating those with 286 

limited programming skills, as all essential configurations are consolidated within a central configuration 287 
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file. We chose GBS-SNP-CROP [38] as base solution as it utilizes the generated sequencing data in a 288 

straightforward way producing a large number of reliable variant genotypes [38]. We wrapped the well-289 

established GBS-SNP-CROP pipeline into a Snakemake workflow and extended it with various steps to 290 

create an automatically generated report that allows the user to evaluate the GBS run and to trace 291 

possible problems with it. 292 

Data generation 293 

We utilized the modified ddRAD method [29] for sequence data generation. By avoiding costly barcoded 294 

adapters and instead ligating digested fragments to non-barcoded adapters and utilizing standard 295 

Illumina dual-indexed barcodes for PCR enrichment and sample multiplexing, we reduced the library 296 

preparation costs to <9€/sample. While the laboratory workflow involves multiple steps that lack 297 

convenient commercial kits, optimization efforts streamlined the process. Hands-on-time was halved to 298 

10 hr for 96 samples and 30 hr for 384 samples by normalizing DNA concentrations using Myra liquid 299 

handling system (Bio Molecular Systems, Australia), incorporating SPRIselect beads for size enrichment 300 

allowing to omit one of the two time consuming concentration measurements with Qubit. The 301 

utilization of BluePippin (Sage Science, USA) and other possible automations may further solidify 302 

routines and improve quality and time- and cost-efficiency.  303 

By generating shorter 2x75 bp PE sequencing reads on the NextSeq550 we reduced sequencing cost to 304 

10-14€/sample, with a yield of 1 million reads per sample. Utilizing shorter reads is advantageous over 305 

longer reads, as the aim is to use unlinked variants and to avoid the complications caused by closely 306 

linked markers in relatedness estimation [39]. Decreasing read length in favor of increasing the read 307 

depth helps in avoiding too low read depth, which may lead to under-calling the heterozygotes and 308 

incorrect assignment of them as a homozygotes [40]. Our results suggest that a sequencing depth 309 

exceeding one million reads per sample leads to a stable variant calling with minimal variant missingness 310 
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in assessed species. However, the required sequencing depth highly depends on the number of targeted 311 

fragments, which is a balance between DNA quality, used enzymes, used fragment size range and the 312 

genome size of the investigated species and even the chosen sequencing technology. Moreover, the 313 

number of recovered variable sites depends on the genome variability. As a result, preliminary 314 

evaluation with a limited subset of samples is recommended to establish the balance between the 315 

targeted fragments and the minimum coverage threshold.  316 

In European whitefish, around 40% of GBS variants were scored repeatedly across two fully independent 317 

analyses, aligning with earlier observations [29]. Conversely, in the bovine analysis, the first two repeats 318 

shared over 80% of the called variants, and all three repeats shared still approximately 75% of variants 319 

despite purposefully varying DNA amount. This indicated on the one hand a high level of repeatability 320 

achievable in certain species, and on the other hand, a remaining challenge in repeatability in other 321 

species. Here, e.g., a duplication [24] in the genome could cause read alignment issues that cannot be 322 

circumvented, and which could possibly cause differences in variant calling. In that case, filtering out 323 

paralogs as suggested by [30] could be a promising approach to follow.  324 

General stochastic variability inherent in wet lab methods, encompassing fluctuations in PCR, library 325 

generation, and fragment size selection, plays a role in the repeatability [41]. These aspects may further 326 

interact with the applied bioinformatic methodologies. For example, DNA fragments carrying the 327 

reference allele are more likely to be successfully mapped or receive higher quality scores [42]. The 328 

repeatability is also influenced by the filtering steps during the variant calling phase, when various filters 329 

(MAF, minimum/maximum coverage as well as minimum call rate) are applied, as we confirmed 330 

comparing the pipeline reports for filtered and unfiltered variants (result not shown). Further, multi-331 

mapping of reads might lead to unpredictable consequences. Notably even for European whitefish, 332 

repeated GBS variant scoring between technical replicates was frequent (85%), underscoring the 333 
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potential enhancement of repeatability through simultaneous library preparation for all analyzed 334 

individuals, although the results suggested the non-repeating variants might partially represent 335 

repetitive genome segments. In cattle, where genomic selection relies on relatedness across 336 

generations, repeatability across fully independent analyses is of significance. Contrastingly, 337 

aquaculture-based genomic selection involves comparing reference populations and selection 338 

candidates within a generation [43], diminishing the need for repeatability across generations. 339 

Additionally, relatedness estimation remains reasonably robust against missing data and genotyping 340 

errors when the variant count is substantial [22].   341 

The GBS approach was tailored here for genomic selection utilizing a genomic relationship matrix, with 342 

the optimal informative GBS variant number falling between 1 000 and 10 000 [15] with a minimum of 343 

1 000 – 2 000 SNPs generally suggested [15]. An in-silico comparison underscored the substantial 344 

influence of enzyme pair selection on reducing assessed genome complexity. However, even the enzyme 345 

pair with the lowest projected fragment count (EcoRI;SphI) was anticipated to yield ample variants.  The 346 

difficulties of predicting fragment sequencing coverage are well-known and unassessed fragments are to 347 

be expected [41,44]. Accordingly, our final GBS variant numbers in cattle and whitefish (20k and 16k) 348 

reduced from their projections (36k and 21k forecasted). Unassessed fragments could arise from 349 

multiple factors, including genomic structural variations between references and samples, variation at 350 

restriction cut sites [45], and repeated regions, biased nucleotide content, and sequence length 351 

variation [41]. A sufficient variant number margin is preferrable, as breeders running a genomic 352 

selection program might prefer excluding low MAF variants increasing the variance of diagonal GRM 353 

elements [46] or variants with suspiciously high observed heterozygosity (>50%, [47]). Notwithstanding 354 

the challenges, the simple projections demonstrated to be sufficient for estimating variant number 355 

magnitudes for the ddRAD GBS method.  356 
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Mock genome and pre-existing reference genome 357 

For cattle a high-quality reference genome exists, while in our case representativeness of the European 358 

whitefish reference genome was uncertain. Utilizing a mock genome is essential when a reference 359 

genome is absent or incomplete for the target species [46,48]. Further, the spread between alignment 360 

rates for the existing reference genome and the created mock reference can serve as a metric for the 361 

evaluation of the representativeness of the reference genome for the data at hand. Acting as a stand-in 362 

scaffold or reference, the mock genome is essential for variant calling and the subsequent analyses by 363 

providing a foundation for aligning and mapping the sequencing reads as well as localizing the called 364 

variants. An effective strategy for determining cluster numbers include using either a small 365 

representative sample group or a single exemplary sample. The latter approach, however, may 366 

introduce biases from unique features of that single sample [46]. Constructing a mock genome from a 367 

broader sample range, although suggested [46], results in an inflated reference. Depending on the total 368 

number of samples and based on our observations, opting for a moderate collection of 3-5 samples 369 

minimize specific biases and avoids excessive inflation. The recommendation of Sabadin et al. [46] , 370 

however, seems to be more relevant for heterogeneous sample sets, as they are common e.g., in plant 371 

breeding. In these cases, the introduced final mock correction step is expected to curb excessive cluster 372 

inflation. The refined final mock provides more stable results and is generally preferrable.  373 

While a mock genome reference might be necessary, it is not curated against computational artifacts 374 

related to sequencing errors [49], sequencing or base composition bias [50–52], or repetitive regions 375 

[49] which can constitute 10-60% of the genome [53,54]. The suggested mock construction parameters 376 

are a good starting point for most animal species, but correctly separating duplicated genome regions 377 

while simultaneously collapsing and merging haplotypic differences into a haploid sequence is a 378 

challenge to all assemblers [55]. Here, we recommend several iterations of the pipeline with different 379 
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settings especially for the identity criterion for merging clusters for each new GBS data generation case. 380 

The identity criterion can be increased until the alignment rate begins to decrease significantly while 381 

maintaining or increasing per-site coverage. Other parameters fine-tune the pipeline mainly by 382 

removing noise from the input data and have smaller impact. Given the influence of data and 383 

parameters on the created mock reference, archiving and sharing the reference facilitates later 384 

comparability and repeatability. Further, many pipeline parameters that had little impact in the present 385 

comparison, could get more influential for problematic data and as such could rescue still semi-optimal 386 

sequencing runs. 387 

Using a subspecies-specific reference for cattle and a species group-specific reference for whitefish led 388 

to a 25% GBS variant increase over mock genomes, as expected when closely related reference genomes 389 

are available [47,56,57]. This underlines the advantage of employing reference genomes whenever 390 

feasible. While the surplus of variants might raise concerns about the genotype call quality, evaluating 391 

genotyping via Mendelian inheritance [58] contradicted this notion, showing stable and comparable 392 

inheritance error rates to reported NGS-generated SNP data [57–59]. Comparing GRMs between GBS 393 

and WGS sequencing favored the reference genome based GBS analysis, which approximated the WGS 394 

GRM matrix more closely. Despite the common concern of low MAF in GBS data [46], our comparison 395 

had lower MAF in the reference WGS data than in the GBS datasets. While the WGS data offers 396 

comprehensive insights, reference genomes are not flawless, for example, excluding variants on genome 397 

regions specific to individuals or populations [60,61] which may explain the minor difference between 398 

the two GBS GRM matrices. In general, using a very closely related reference genome increases the 399 

mapping and genotyping accuracy [56,62]. Therefore, it is recommended to execute both mock and 400 

possibly pre-existing reference genome paths of the pipeline and then compare the outcomes. Current 401 

observations suggest a reference genome is advantageous and should be used when available, though it 402 

is not an absolute requirement. Using a pre-existing reference genome offers a high quality assembly 403 
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and consistency and possibly annotated genomic context for interpretation [63]. Further, the use of a 404 

reference genome facilitates evaluating the representativeness of the data and allows linkage-based 405 

analyses.  406 

Variant calling using different mock genomes or a pre-existing reference genome might include different 407 

variants [38], but the approaches gave currently very similar relatedness estimates. This aligns with 408 

previous studies suggesting that while extensive repeatability of GBS genotype data can be challenging 409 

biological inferences based on these data sets are more robust [20,64,65]. When genomic selection 410 

analyses are based on relatedness, fixing the reference genome is not the only option for merging data 411 

sets, since it is possible to combine partially overlapping relatedness matrices [66]. However, this 412 

necessitates having representative population samples with reference individuals of varying relatedness 413 

for both having reliable estimates within each round and for enabling merging of the matrices. 414 

Comparability issues might occur even when basing analysis on reference genomes, which develop over 415 

time [67]. 416 

Conclusions 417 
The relatedness estimates based on the developed ddRAD GBS protocol aligns with independent 418 

relatedness estimates in both cattle and European whitefish samples, showcasing its versatility and 419 

extending the performance demonstration beyond GBS-SNP-CROPs original aim of identifying biological 420 

replicates. Our results conclude that while a pre-existing reference genome enhances variant calling 421 

quality and quantity, its absence does not impede the GBS-based genomic evaluation or selection. The 422 

applicability of the presented approach for genomic evaluation has been demonstrated for European 423 

whitefish [68], despite its challenging genomic structure. Further optimization, including fragment size 424 

window refinements and incorporation of methylation-sensitive restriction enzymes [69] could bring 425 

even greater efficiency and accuracy. The robust and user-friendly bioinformatic pipeline with an 426 

implementation of best practice approaches and wet-lab workflow achieves our broader goal of 427 
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democratizing genotyping methods for researchers with varying levels of bioinformatics expertise and 428 

across a wide range of species and especially in less-studied production species. Experimenting with 429 

individual tuning parameters for the data at hand remains, however, indispensable and normally several 430 

pipeline runs are required until satisfying results are obtained. Furthermore, adjusting the filtering 431 

thresholds of called variants according to the analysis scope is still a required step, though default values 432 

should work well in many situations. 433 

Methods 434 

Samples 435 

Altogether 12 Nordic Red dairy cows from the Luke research barn were selected for GBS and WGS 436 

sequencing, pipeline optimization and benchmarking. For each cow sample three repeated GBS libraries 437 

and one WGS library were created, starting from the same extracted DNA so that in total 36 GBS 438 

libraries and 12 WGS of cow samples were sequenced (Figure S1). 439 

In addition, 42 European whitefish were used for pipeline validation and repeatability testing. Fish 440 

samples consisted of 27 randomly picked, unrelated individuals and 5 families of trios (parents and one 441 

offspring). From the set of random individuals, 12 whitefish were sequenced three times, twice with 442 

technical replicates of the same library and once with an entirely new library, that was started from the 443 

DNA. The European whitefish originate from the national breeding program maintained by Luke at the 444 

inland, freshwater fish farm located in Enonkoski [25,26]. The broodstock was established in 1998 from 445 

an anadromous wild strain of the river Kokemäki. Currently, the breeding program is based on 446 

traditional sire-dam-offspring pedigree, maintained by the use of family tanks during the early phase of 447 

growth [25,26], but the development of SNPs will enable to implement also genomic selection. 448 
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Cow DNA was extracted from blood (ethical permission ESAVI/16348/2019) while fin tissue preserved in 449 

100% ethanol was used for DNA extraction from fish. DNA was extracted using DNeasy Blood & Tissue 450 

Kit (Qiagen, Germany) following manufacturer’s protocol.  451 

Enzyme selection in silico 452 

Restriction enzyme pairs for genome reduction were selected i) to generate a number of fragments 453 

providing above 5 000 GBS variants and ii) to leave a suitable overhang for library preparation. Assuming 454 

the proportion of variable sites of approximately 0.005 [24] and aiming for Paired-End (PE) sequencing 455 

with a total of 150 (2x75 bp) sequence read length per fragment, the number of variable sites was 456 

expected to be 0.75 times the fragment number. That suggested inclusion of at least 10 000 fragments, 457 

if all variable sites pass all quality ascertainment steps. The considered restriction enzyme pairs were 458 

EcoRI with MspI, SphI, MseI and NlaIII, or SphI with MluCI. These enzymes were previously used 459 

successfully for GBS in other species [21,70,71]. For a wider applicability, six reference genomes were 460 

included for the restriction enzyme evaluation: Bos taurus (ARS-UCD1.2), Coregonus supersum ‘balchen’ 461 

(AWG_v2), Gallus gallus (GRCg6a), Hermetia illucens (iHerIll2.2), Oncorhynchus mykiss (Omyk_1.0), and 462 

Salmo salar (ICSASG_v2). DdRAD library construction was simulated using SimRAD version 0.96 [72], but 463 

the functions were adjusted to use the full cut site. Digestion was simulated by using both the full 464 

reference genome contigs as well as reduced genomes of 10 random 10% genome subsamples. The full 465 

genome based (Bos taurus and Coregonus supersum) predicted fragments for the chosen EcoRI;SphI 466 

enzyme pair were used for quality evaluation of the GBS analysis. The obtained sequence data was used 467 

to estimate the effective size window and as consequence the size selection window was set to 150 - 468 

400, for consistency. The effective size window thresholds were roughly estimated as values, where the 469 

slope of the density curves of the aligned fragments turned to +1 (lower size threshold) and -1 (upper 470 

size threshold).  471 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 4, 2023. ; https://doi.org/10.1101/2023.10.03.560633doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.03.560633
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 
 

   
 

ddRAD library preparation 472 

The workflow (Figure S6) for the ddRAD library preparation was adapted from [29]. In detail, 250 or 500 473 

ng of DNA was double-digested with two restriction enzymes EcoRI-HF (G^AATTC) and SphI-HF 474 

(GCATG^C) (New England Biolab, USA). The restriction reaction was performed in a volume of 20 µL, 475 

containing 17 µL of DNA (250 ng/500 ng in total), 0.25 µL of EcoRI-HF (5 units), 0.25 µL of SphI-HF (5 476 

units), 2 µL of cut-smart buffer (10x) and 0.5 µL of molecular grade water at 37°C for 2h, following heat-477 

inactivation for 15 min at 65°C. Two non-barcoded restriction site specific adapters (Table S3) were 478 

ligated by adding 1 µL of each adapter (adapter P1 EcoRI: 1 µM, adapter P2, SphI: 10 µM) to the 479 

restriction mixture, 0.5 µL of T4 ligase (200 units) and 1.5 µL of ligation buffer (New England Biolab, 480 

USA). Ligation was performed at 16°C for 14h, following heat-inactivation at 65°C for 15 min. DNA-481 

fragments were selected between 200 bp and 700 bp by using SPRIselect magnetic beads (Beckman 482 

Coulter, USA) with a left-right ratio of 1x-0.56x. In details, the volume of each sample was adjusted with 483 

molecular grade water to 50 µL and then 28 µL of SPRIselect beads were added to achieve a 0.56x ratio 484 

for the selection of fragments shorter than 700 bp following selection of fragments longer than 200 bp 485 

by adding 22 µL of SPRIselect beads to achieve a ratio of 1x. The size selected DNA was resuspended in 486 

25 µL of molecular grade water. Samples were barcoded by adding Illumina Nextera v2 (Illumina, San 487 

Diego, CA, USA) combinatorial dual-indexed barcodes (i7 and i5). For each individual sample a PCR-mix 488 

containing 6 µL of 5x Phusion HF buffer, 0.4 µL dNTP (10 mM), 0.2 µL of Phusion HF DNA polymerase 489 

(0.4 units) (ThermoFisher scientific, USA), 1.5 µL of i5 barcode primer, 1.5 µL of i7 barcode primer, 5 µL 490 

of sample and 15.4 µL of molecular grade water was prepared, two PCR reactions per sample were 491 

performed. The cycling conditions were as follows: initial denaturation at 98°C for 30 sec, followed by 18 492 

cycles of 10 sec at 98°C, 20 sec at 61°C, 15 sec at 72°C and a final elongation step at 72°C for 10 min. The 493 

two PCR reactions per sample were pooled, the volume was adjusted to 50 µL, and small fragment 494 

removal was carried out with 40 µL (0.8x) SPRIselect beads. The size selected PCR products were 495 
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resuspended in 25 µL molecular grade water and quantified using Qubit Flex with 1x dsDNA HS assay 496 

(ThermoFisher scientific, USA). Only products with a significantly higher amount than the No Template 497 

Control (NTC) were used for sequencing (>3 ng/µL). 498 

Sequencing 499 

Single ddRAD libraries were pooled in equimolar amounts. The pool was size selected with SPRIselect 500 

beads to the length between 300 and 700 bp (ratio 0.75-0.56x), corresponding to the combined length 501 

of 150-550 bp restriction insert and 147 bp adapter. The quality and size of the pooled sequencing 502 

library was evaluated on the TapeStation 4150 (Agilent, USA) using the DNA HS1000 assay. 503 

Quantification of the library was done using Qubit 4 (1x dsDNA HS assay) (ThermoFisher scientific, USA). 504 

Following the guidelines from the NextSeq System denature and dilute libraries guide (Document # 505 

15048776 v09, December 2018 (Illumina, San Diego, CA, USA)), the library was diluted for sequencing to 506 

a final concentration of 1.4 pM, containing 10% PhiX control, to increase complexity at the start of the 507 

sequencing. The PE sequencing (2x75 bp) was performed on the NextSeq 550 (Illumina, San Diego, CA, 508 

USA) using medium output flow cell. 509 

The WGS of cow samples was performed at the Finnish Functional Genomics Centre (Turku, Finland) 510 

using TruSeq® DNA PCR-Free Library kit (Illumina, San Diego, CA, USA) and PE sequencing (2x150 bp) on 511 

an Illumina NovaSeq 6000 (Illumina, San Diego, CA, USA) platform. 512 

Mock-reference genome  513 

Analyzing GBS data without a preexisting reference genome necessitates in creating a technical (mock) 514 

reference. For this, various sample selection methods were considered: choosing the sample with the 515 

highest read count (mock-strategy 1), a sample with an average read count (mock-strategy 2), a random 516 

subset of three samples (mock-strategy 3), or all samples (mock-strategy 4).  517 
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As the first step, the raw PE sequences were checked for overlap that might happen in case of short 518 

inserts. Overlapping reads were merged into single-end (SE) reads using PEAR [73], with two tuning 519 

parameters being optimized here: the p option (values between 0.001 and 0.1) for a statistical test to 520 

determine read-pair merging, and the pl option (values 30 to 70) for defining the minimum accepted 521 

total length of the merged construct. These parameters determined when read pairs were merged and 522 

whether the construct's length met the criteria for inclusion. PE reads that could not be merged, were 523 

then stitched together with a sequence of 20 N bases as standard for the pipeline. Stitching of reads was 524 

controlled by the parameter rl, and reads were stitched, if the length of read1 was larger than (rl - 19) 525 

and length of read2 was larger than (rl - 5), otherwise reads were not used for the mock generation. The 526 

resulting SE reads were utilized to construct the de-novo mock reference genome using vsearch [74]. In 527 

the de-novo building phase, two vsearch options were fine-tuned: the id option (values between 0.8 and 528 

0.99), defining the minimum pairwise identity for merging two clusters, and the min option (values 529 

between 80 and 160), setting the minimum cluster length for inclusion in the mock reference. The in-530 

silico simulated protocol as described in “Enzyme selection in silico” was used to evaluate the mock 531 

reference constructs. 532 

Following the de-novo mock reference creation, an additional refinement step was applied, where 533 

clusters with low coverage were removed from the mock reference. Tuning parameters were 534 

totalReadCoverage and minSampleCoverage. The first parameter defines the minimum number of reads 535 

that need to be aligned across all samples on a cluster to keep it in the mock reference. The second 536 

parameter defines the minimum number of samples that need to have at least a single read aligned to a 537 

cluster so that this cluster remains in the mock. For the tuning of the totalReadCoverage we tested 6, 538 

12, 24, 60 and 120 as values and for minSampleCoverage reads from 2 (10%), 4 (25%), 6 (50%), 8 (75%), 539 

10 (90%), 12 (100%) of the total number of samples in the study.  540 
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Variant calling 541 

The GBS variant calling was done using Snakebite-GBS [75], which is a Snakemake pipeline extension 542 

that is based on the existing GBS-SNP-CROP [38] pipeline and that is part of the Snakebite framework 543 

Snakepit [76]. First, the quality-trimmed reads were aligned with BWA-mem [77] against the mock 544 

and/or preexisting reference genome(s). Then, samtools mpileup [78] was used for variant calling and 545 

various filters were applied to obtain the final variant set. The underlying GBS-SNP-CROP pipeline allows 546 

for eight different filters: (1) mnHoDepth0 (value: 5), the minimum depth required for calling a 547 

homozygote when the alternative allele depth equals 0; (2) mnHoDepth1 (value: 20) the minimum depth 548 

required for calling a homozygote when the alternative allele depth equals 1; (3) mnHetDepth (value: 3) 549 

the minimum depth required for each allele when calling a heterozygote; (4) altStrength (value: 0.8) the 550 

minimum proportion of non-primary allele reads that are the secondary allele; (5) mnAlleleRatio (value: 551 

0.25) the minimum required ratio of the less frequent allele depth to the more frequent allele depth; (6) 552 

mnCall (value: 0.75) the minimum acceptable proportion of genotyped individuals to retain a variant; (7) 553 

mnAvgDepth (value: 3) the minimum average read depth of an acceptable variant; (8) mxAvgDepth 554 

(value: 200) the maximum average read depth of an acceptable variant. 555 

The cattle WGS variant calling was performed following the GATK4 best practices [79] implemented as 556 

Snakemake [37] workflow called Snakebite-WGS [80]. Implemented steps contain, among others, the 557 

GATK base recalibrator as well as a model to adjust the base quality scores and a base recalibration step. 558 

Variant calling is done via haplotype caller. The pipeline utilizes also BWA-mem to align the data but 559 

includes a refinement step using Picard before the GATK4 software suite is used for the final variant 560 

calling with applied default filters. 561 
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GBS quality evaluation 562 

The generated cow GBS variant data was mapped against an in-silico digested ARS-UCD1.2 reference 563 

genome for evaluating the size selection performance. Following variant calling, sample-wise genotype 564 

concordance between GBS and WGS sequencing strategies was assessed using Picard.  565 

The repeatability of the GBS runs was tested by intersecting the variant locations on the corresponding 566 

reference genomes. Here, bcftools [81] was used to intersect the three vcf-files and corresponding 567 

intersection numbers were calculated. Further, samtools mpileup was run for the GBS data aligned to 568 

the reference genome and for each sample contiguous areas, that had a minimum coverage of three 569 

reads, were identified and stored in bed-format. Individual sample-wise bed-files were then merged and 570 

only regions with read support from at least 10 samples were kept. This bed-file was then used to 571 

intersect the WGS-based vcf file using bedtools [82] and extract WGS variants only from the 572 

corresponding intersecting genome regions. 573 

In cattle, the GBS variant based variability and relatedness were compared against resampled WGS 574 

variants with restricted variant numbers from 50 to 30 000 to compare how the variant number 575 

influenced the classical Genomic Relatedness Matrix (GRM) calculated using the R-package BGData [83]. 576 

The GRM based on the full WGS variant matrix was compared to smaller bootstrap samples of WGS and 577 

GBS data.  578 

The lift-over between mock reference and pre-existing reference genome to compare variants from 579 

both methods based on their chromosomal was done by using the tool transanno. Here, first the mock 580 

reference was aligned against the reference genome and the resulting file in pairwise mapping format 581 

(paf) was then used in transanno to create the lift-over chain and eventually to perform the lift-over. 582 

Chromosomal locations between the lift-overed mock reference-based variants and their pre-existing 583 

reference genome based counterparts were then again matched via bcftools isec. 584 
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The GRM structure differences were quantified by measuring the variability in different directions using 585 

the distance between the eigenvalues of the matrices, calculated using the Frobenius matrix norm.  586 

For whitefish data, relatedness in trios was assessed using the full whitefish data set to overcome bias in 587 

the small data set caused by few closely related individuals in the parental generation. In addition to the 588 

genomic relatedness, the genotype quality was assessed by evaluating non-Mendelian inheritance of the 589 

GBS variants in five families of trios, that included parents and an offspring. 590 
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