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Abstract 
Saprolegnia oomycete infection causes serious economic losses and reduces fish health in aquaculture. Genomic selection based on thousands 
of DNA markers is a powerful tool to improve fish traits in selective breeding programs. Our goal was to develop a single nucleotide polymor-
phism (SNP) marker panel and to test its use in genomic selection for improved survival against Saprolegnia infection in European whitefish 
Coregonus lavaretus, the second most important farmed fish species in Finland. We used a double digest restriction site associated DNA 
(ddRAD) genotyping by sequencing method to produce a SNP panel, and we tested it analyzing data from a cohort of 1,335 fish, which were 
measured at different times for mortality to Saprolegnia oomycete infection and weight traits. We calculated the genetic relationship matrix 
(GRM) from the genome-wide genetic data, integrating it in multivariate mixed models used for the estimation of variance components and 
genomic breeding values (GEBVs), and to carry out Genome-Wide Association Studies for the presence of quantitative trait loci (QTL) affect-
ing the phenotypes in analysis. We identified one major QTL on chromosome 6 affecting mortality to Saprolegnia infection, explaining 7.7% to 
51.3% of genetic variance, and a QTL for weight on chromosome 4, explaining 1.8% to 5.4% of genetic variance. Heritability for mortality was 
0.20 to 0.43 on the liability scale, and heritability for weight was 0.44 to 0.53. The QTL for mortality showed an additive allelic effect. We tested 
whether integrating the QTL for mortality as a fixed factor, together with a new GRM calculated excluding the QTL from the genetic data, would 
improve the accuracy estimation of GEBVs. This test was done through a cross-validation approach, which indicated that the inclusion of the 
QTL increased the mean accuracy of the GEBVs by 0.28 points, from 0.33 to 0.61, relative to the use of full GRM only. The area under the curve 
of the receiver–operator curve for mortality increased from 0.58 to 0.67 when the QTL was included in the model. The inclusion of the QTL as 
a fixed effect in the model increased the correlation between the GEBVs of early mortality with the late mortality, compared to a model that did 
not include the QTL. These results validate the usability of the produced SNP panel for genomic selection in European whitefish and highlight 
the opportunity for modeling QTLs in genomic evaluation of mortality due to Saprolegnia infection.

Lay Summary 
Saprolegnia infection causes serious economic losses and reduces fish health in aquaculture. We created a novel set of genetic markers to use 
in the selective breeding of European whitefish to reduce mortality due to the fungus. Using genetic markers, we estimated how much differ-
ent fish traits are determined by genetic variation, and thus what potential traits have to be selected. We observed that resistance to infection 
was controlled by both a genetic variant with a major effect on mortality and by many other variants with a small effect distributed across the 
genome. We tested whether we could increase the precision of genomic breeding values used in the selective breeding by explicitly adding the 
major genetic variant to the analysis, and we observed an increase in precision in our results. We conclude that directly including information 
about the major genetic variant increases the precision of our predictions, rather than assuming that all genetic variants each explain a small 
amount of the genetic variation.
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Introduction
The advent of high throughput genetic technologies has 
allowed to genotype animals for hundreds, thousands, or 
even millions of different DNA markers, and to integrate this 
data in breeding programs. The availability of genome-wide 
data has allowed to extension of the genetic-based selection 

techniques, such as marker-assisted selection (MAS; Lande 
and Thomson, 1990; You et al., 2020) to more powerful 
approaches, such as genomic selection (Meuwissen et al., 
2001; Goddard and Hayes 2007). Genomic evaluation with 
tens of thousands of DNA markers has been proven to be an 
effective selective tool in animal breeding because quantita-
tive traits are typically determined by multiple genes with 
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minor effects on the phenotype. Hence, MAS that specifi-
cally modeled only a few major quantitative trait loci (QTL) 
of quantitative traits in a breeding value evaluation has been 
in fact largely abandoned in practice (Misztal et al., 2020).

For aquaculture species, where the domestication period 
is short (Houston et al., 2020), the presence of QTL of large 
effect is surprisingly common for disease resistance traits 
(Fuji et al., 2007; Moen et al., 2009; Houston et al., 2010; 
Aslam et al., 2020; Karami et al., 2020; Calboli et al., 2022, 
Fraslin et al., 2022a; Vallejo et al 2022; Vela-Avitúa et al., 
2022, 2023). This observation and all the instances where 
QTLs of large effects have been observed have induced a 
renewed interest in the explicit integration of QTL informa-
tion in genetic evaluations (Li et al., 2017; Lopes et al., 2017; 
Nani et al., 2019; Ren et al., 2021; Fraslin et al., 2022a).

Saprolegnia is a naturally occurring oomycete pathogen 
affecting aquaculture species, causing large losses, especially in 
freshwater growing conditions (Van Den Berg et al., 2013). At 
present, work has been carried out to identify the presence of 
genetically different Saprolegnia strains (Sarowar et al., 2019) 
in different hosts and growing conditions (Sandoval-Sierra et al., 
2014), but far less information is available on the genetic resis-
tance to Saprolegnia infection in host species (Misk et al., 2022).

Our aim in this work was manyfold. First, we aimed to test 
the feasibility of using next generation sequencing (NGS) to 
identify a novel panel of single nucleotide polymorphisms 
(SNPs) for genomic selection for commercial traits in white-
fish, an aquaculture species that currently lacks commer-
cial/off-the-shelf genetic marker chips that can be used for 
selection. We developed a SNP panel for European whitefish 
(Coregonus lavaretus L.) through double digest restriction 
site associated DNA (ddRAD) sequencing, using the recently 
published reference genome (De-Kayne et al., 2020). Sec-
ondly, we aimed to understand the genetic of mortality 
Saprolegnia infection, a common, commercially relevant 
infection. We were especially interested in understanding 
whether the genetic architecture of resistance is completely 
polygenic, or is based on one or a few QTLs explaining most 
of the genetic variance, or a mixture of these architectures. 
We genotyped a cohort of fish kept in freshwater tanks in 
the Natural Resources Institute Finland’s breeding program, 
and we followed their mortality due to Saprolegnia infection 
to sexual maturity. Finally, we were interested in whether 
an NGS-based genomic evaluation would provide accurate 
genomic estimated breeding values (GEBVs) and whether 
the explicit modeling of any major QTL would be useful in 
genomic selection-based breeding programs.

Materials and Methods
Animal care
The establishment of progeny families at Natural Resources 
Institute Finland’s fish breeding facilities followed the proto-
cols approved by the Natural Resources Institute Finland’s 
Animal Care Committee, Helsinki, Finland.

Fish stock
We analyzed data from the Natural Resources Institute Fin-
land’s breeding program, housed in freshwater facilities at 
Enonkoski research station. Saprolegnia is present in the water 
source and thus fish were naturally exposed to the pathogen. 
In November 2018, a cross was carried out between 26 sires 
and 100 dams that resulted in a cohort of 1,671 fish (all off-
spring of the same age), whose data we present here. Mating 
was carried out for 1 wk, and the eggs from all mating were 
pooled after the fertilization. The eggs were incubated in a 
single large incubator. At eyed stage, the eggs were placed in a 
single indoor tank in which the hatching occurred. These fish 
are the safe reserve of the main breeding program stock in 
which the families are typically incubated separately, reared 
separately in family tanks, individually tagged without a need 
for genotyping and only then pooled together (Kause et al., 
2011).

Phenotype data collection
Between January 18 and February 1, 2021, a total of 1,671 
fish were individually tagged with passive integrated tran-
sponders (Biomark GPT12 pit tags) and a fin clip was sampled 
for genotyping, and the fish were then moved to an outdoor 
tank to initiate the experiment. The tank was an concreate, 
flow through tank of size of 63 m2. The farm uses water from 
an upstream lake, and Saprolegnia occurs naturally in this 
catchment area and has caused disease outbreaks annually in 
recent years. At tagging, all fish were weighted – this weight 
is the “Weight2” trait in our data. The choice of numbering 
follows the growth seasons, hence “Weight2” is the weight at 
the second growth season. Following tagging, mortality to 
Saprolegnia infection was collected daily during weekdays. A 
dying fish with the growth of fungus on the surface of a fish 
was captured with a hand net and its id-tag was recorded. If 
fish died and it did not have fungal growth on it, it was not 
considered to be dying due to Saprolegnia (Table 1).

On May 11, 2022, all fish were measured for body weight 
“Weight3” and body height to body length ratio “Height/

Table 1. Traits summary. Sample size and mean values for recorded traits, and number of fish alive at measuring date, number of fish found dead to 
Saprolegnia up to a measuring date, and number of missing fish. Because some fish were lost (likely due to predation) the sample size indicates the 
actual number of fish that could be scored for mortality at any given time

Sample size Mean

Weight2 (g) 1,335 279.87

Weight3 (g) 620 756.2

Height/Length3 (dimensionless ratio) 620 0.23

Sample size Incidence # of fish alive # of fish dead due to fungus # of fish missing

Mortality3 (count) 836 0.31 576 260 499

Mortality4 (count) 473 0.52 228 245 103

Mortalitytot (count) 733 0.69 228 505 602
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Length3”. Height/Length3 is one of the selected traits in the 
breeding program, because an elongated shape is preferred 
(Kause et al., 2011). Mortality due to Saprolegnia up to that day 
is termed “Mortality3”. Mortality to Saprolegnia were coded as 
1 and survival was coded as 0. Mortality to Saprolegnia infec-
tion was again collected as observed until November 8, 2022—
mortality from time 3 up to that day is the “Mortality4” trait in 
our data. Mortality to Saprolegnia between time 3 and time 4 
was coded as 1 and survival up to time 4 was coded as 0. Finally, 
we created a synthetic trait, Mortalitytot, as the sum of Mortality3 
and Mortality4. All the fish that died due to Saprolegnia during 
the study were coded as 1 and the fish that survived until time 4 
were coded as 0. The fish that were not recaptured after tagging 
were coded as missing observations for mortality. Fish disappear 
because of predators such otters and herons.

ddRAD library preparation
Adapting the protocol of Sala-Lizana and Oono (2018), DNA 
was extracted from the finclips using DNeasy 96 Blood & Tis-
sue kit (Qiagen) following the manufacturer’s protocol. DNA 
concentration was measured by Nanodrop and normalized to 
30 ng/µL concentration. About 500 ng of high-quality DNA per 
sample (17 µL; 30 ng/µL) was double-digested with two rare 
cutting restriction enzymes EcoRI-HF and SphI. The restriction 
was done in a volume of 20 to 17 µL DNA, 0.1 µL EcoRI-HF, 
SphI0.5 µL, 2 µL cutsmart buffer (10×), and 0.4 µL of molecular 
grade water at 37 °C for 15 min or 4 h, following heat-inacti-
vating for 15 min at 65 °C. The subsequent ligation (add 2.5 
µL ligation buffer, 1 µL of each adapter (100 nM), and 0.5 µL 
T4 ligase (NEB, New England, USA) of non-barcoded adapter 
was done at 16 °C for 14 min, following heat-inactivation at 
65 °C for 15 min. Not incorporated adapters and other small 
DNA-fragments were purified/removed using SPRIselect mag-
netic beads (Beckman Coulter). First, the volume of each sample 
was adjusted with molecular-grade water to 50 µL and then 40 
µL of magnetic beads were added (0.8× to select for fragments 
longer than 200 bp) following the manufacturer protocol. The 
purified DNA was resuspended in 25 µL of molecular-grade 
water. The quantity of each DNA was measured using the 
Qubitflex dsDNA HS (high sensitive) assay. Each sample was 
individually barcoded with the Illumina Nextera v2 combinato-
rial dual-indexed barcodes (i7 and i5). The indices were attached 
with 18 cycles of PCR using Phusion polymerase (Fisher Scien-
tific) in 20 µL volume and an optimized annealing temperature 
of 61 °C. The amount of template was 5 µL. Subsequently, the 
PCR-products were quantified using Qubitflex with a dsDNA 
HS assay. Only products with a significantly higher amount than 
the NTC (no template control) were used for sequencing >3 ng/
µL. Sample with a low amount of product was repeated if appli-
cable with 1 or 2 more cycles.

Sequencing
Single libraries were pooled in equimolar amounts and run on 
a 1.5% TAE gel. Fragments between 400 and 700 bps were 
cut out of the gel and purified with Qiagen Gel extraction Kit. 
The quality and size of the final, pooled sequencing library 
were checked on the Bioanalyzer or TapeStation using DNA 
HS assays. For sequencing the pooled library was adjusted to 
a concentration of 1 to 4 nM. Following the guidelines from 
Illumina, the libraries were diluted to a final concentration of 
2.0 pM. The paired-end sequencing (2 × 150 bp) was done on 
the NextSeq 550 (Illumina).

Basecalling and demultiplexing were done with Illumina bcl-
2fastq2 Conversion Software (Illumina) with one index mis-
match allowed. For each sample individually, the paired-end 
fragments were aligned to the reference genome (De-Kayne 
et al., 2020) using Bowtie (Langmead and Salzberg, 2012), 
retaining only those fragments that had a unique match to the 
genome. The selected fragments were sorted with Samtools (Li 
et al., 2009), which was used to generate a population-wide 
consensus call for each location of the genome covered by 
individual sample fragments. The genotyping by sequencing 
(GBS) pipeline was implemented in Snakemake (Mölder et 
al., 2021) and is an extension of the GBS SNP-Calling Refer-
ence Optional Pipeline (GBS-SNP-CROP) (Melo et al., 2016). 
This pipeline is publicly available (Fischer, 2023).

The raw ddRAD genotyping produced 65,318 SNPs. 
Following De-Kayne (2022), and after analysis of our data 
coverage patterns, all SNPs mapping to poor-quality refer-
ence assembly chromosomes 22, 28, 32, 35, 38, and 40 were 
removed. Using a quality control of at least 5% minor allele 
frequency, and a threshold of 80% genotyping success, 5,242 
high-quality SNPs remained for 1,671 samples. Samples miss-
ing 50% or more of the genotypes of their SNPs were also 
removed, leaving us with a final dataset of 1,335 samples 
genotyped for 5,242 SNPs. In all analyses, each SNP geno-
type was coded as the standard 0/1/2 to reflect the number of 
minor alleles in the genotype (0, homozygote for the major 
allele; 1, heterozygote; 2, homozygote for the rare allele). In 
analyses where genotype (for any SNP) was used as a fixed 
effect in a liner model we transformed the 0/1/2 value as 1/2/3 
to use genotype as a qualitative parameter with 3 levels with 
the software DMU (Madsen et al., 2014; see below).

Estimation of heritability and genetic correlations
Phenotypic, genetic, and residual (co)variances of fish traits 
were estimated using the Average Information Restricted 
Maximum Likelihood module of DMU (DMUAI; Madsen et 
al., 2014). Heritabilities were estimated with a 2-trait multi-
variate model in which Weight2 was always included. Weight2 
was available for all fish, whereas the other traits had some 
missing data, and hence this approach accounts for potential 
selection bias (Henderson, 1975; Ouweltje et al., 1988). Cor-
relations were estimated with a series of 3-trait analyses. The 
model used for all traits was:

Model 1 : yij = µj + aij + eij

in which yij is the phenotype of a trait j for the ith individ-
ual, µj is the mean value of a trait j, aij is the random genetic 
effect explained by the realized genomic relationship matrix 
between genotyped individuals (genetic relationship matrix 
[GRM]), and eij the random residual error. The GRM was 
calculated using htginv module of the MiX99 software pack-
age (Stranden and Lindauer, 1999) on the full SNP dataset 
of the offspring fish (‘full GRM’), using the first VanRaden 
method (VanRaden et al., 2009), without the need of using 
any correction to obtain an invertible matrix. Missing geno-
types were imputed by htginv. Heritability was computed as:

h2 = σ2
G/(σ

2
G + σ2

E)

with h2 the heritability, σ2
G the genetic variance for a traitj, 

and σ2
E the residual variance. The sum σ2

G + σ2
E corresponds 
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to the overall phenotypic variance (σ2
P). The genetic correla-

tion was:

corjk = covjk/sqrt
Ä
σ2

gjxσ2
gk

ä

with corjk and covjk the genetic correlation and covariance 
between traitj and traitk, and σ2

gj and σ2
gk the genetic vari-

ances for traitj and traitk. The phenotypic correlations were 
calculated accordingly. Phenotypic correlations were tested 
for significance using a Pearson’s correlation test. Genetic cor-
relations were considered significant when the interval corjk ± 
1.96 × SEjk did not include 0.

Similar to our analysis here, linear multitrait models are 
routinely used for binary traits in practical commercial breed-
ing value evaluations. Both heritability estimates and selection 
accuracies from linear models were transformed to account 
for the binary nature of the traits (see details below). Genetic 
correlations of binary traits estimated using linear models are 
expected to be unbiased, whereas phenotypic correlations are 
biased downwards (Mäntysaari et al., 1991).

For mortality traits, the formula of Dempster and Learner 
(1950) was used to transform the h2 on the observed scale to 
the heritability on the underlying liability scale. Phenotypic 
and residual correlations of Mortality3 and Mortality4 can-
not be estimated because of the limited number of samples in 
common between the two phenotypes.

Genome-wide association study
The statistical software DMU was used for a genome-wide 
association study (GWAS), using the leave one chromo-
some out approach described by Yang et al. (2014). In this 
approach, the association between genotype and phenotype 
is carried out using a linear fixed regression model fitting 
one SNP at a time, but rather than using the full GRM as 
the random factor for all SNPs, a new partial GRM is calcu-
lated every time by removing all the other SNPs on the same 
chromosome as the SNP in the analysis, calculating a partial 
GRM on the fly and fitting it as the random effect (Yang et 
al., 2014). Thus, for GWAS analyses, the following 2-trait 
model, in which Weight2 was always included, was used:

Model 2 : yij = µj + bxin + aij + eij

in which b is the fixed regression slope, xin is the genotype of 
the nth SNP marker of an individual i, a’ij is the random genetic 
effect explained by the partial GRM, and all the other terms as 
described before. Weight2 was used again to account for poten-
tial selection bias. Significance of the SNP effects was deter-
mined using Bonferroni correction (0.05/number of SNPs) for 
genome-wide significance, and as 0.05/(mean number of SNPs 
per chromosome) for chromosome-wide significance.

The percentage of genetic variance explained by a SNP was 
calculated following (Lynch and Walsh, 1998), as:

σ2
SNP = 2p (1 p) b2/σ2

G

in which b is the fixed regression slope from Model 2, p is the 
frequency of the major allele, σ2

G is the total genetic variance 
explained by the full GRM (from Model 1).

We tested the effect of the presence of a QTL for mor-
tality by specifically modeling the fixed effect of SNP 
LR664349.1_1710215 (the only SNP associated with all 

mortality traits) along with the remaining GRM effects in the 
successive analyses.

Estimation of genomic breeding values
To assess the influence of a large QTL on breeding values of 
Mortality3, genomic breeding values were estimated in two 
ways, either excluding or including the top QTL SNP as a 
fixed effect. We focused only on Weight2, Weight3, and Mor-
tality3 to illustrate the modeling approaches. GEBVs were 
estimated to solve the mix models with MiX99 (Pitkänen 
et al., 2022). First, GEBVs of all three traits were estimated 
using Model 1 and genomic best linear unbiased prediction 
(GBLUP). In this approach, the GEBVs are the result of mod-
eling the realized genomic relationship matrix.

Second, in the GBLUP+QTL model, also the top SNP was 
included as a separate fixed factor:

Model 3 : yij = µj + QTLi + anoqtl + eij

in which QTLi is the individual genotype of the top QTL SNP 
fitted as a fixed categorical variable, and anoqtl is the polygen-
etic genetic effect explained by the partial GRM calculated 
without the QTL SNP, by first deleting from the genotype 
data the top QTL SNP in chromosome 6, and then calcu-
lating a new partial GRM. To obtain the total GEBV in this 
approach, the solution of the fixed QTL effect was added 
to the polygenetic GEBV of an individual obtained via the 
partial GRM. For both approaches, the (co)variance compo-
nents needed as input were estimated using the same models 
in DMU. The models used were the bivariate models, having 
Weight2 always as one of the traits in the analysis.

The results of Mortality3 are shown for both GBLUP 
Model 1 and GBLUP+QTL Model 3, and for body weights, 
only Model 1 is given because the QTL used in Model 3 was 
not QTL affecting any weight trait.

Validation of genomic evaluation with and without 
explicit QTL modeling
The predictive ability of the GEBVs of Mortality3, Weight2, 
and Weight3 was validated in two different ways. Both val-
idation steps were run both on GBLUP model and on the 
GBLUP+QTL model that included the genotype of the top 
SNP as a fixed effect.

First, a cross-validation approach was used to randomly 
mask 20% of phenotypes of a trait, and then GEBVs of all 
fish were estimated. Then, for the masked individuals only, 
the correlation of their GEBVs to their actual phenotypes was 
calculated. Accuracy was calculated as the Pearson correlation 
coefficient between the GEBVs and the observed phenotypic 
values divided by the square root of the heritability of the trait 
on the observed scale (Legarra et al., 2008). For Mortality3 we 
also calculated the area under the curve (AUC) of the corre-
sponding receiver–operator curve, that is, we assessed the clas-
sification performance of the GEBV in predicting the actual 
mortality phenotypes. For a completely random performance 
(no classification power) the AUC is 0.5, whereas a perfect clas-
sification corresponds to a value of 1. For cross-validation and 
calculation of AUCs, we ran 1,000 resampling steps, and the 
means and standard deviation are presented.

When sampling individual fish randomly into the two 
groups, the reference group and the validation group maintain 
their close relationship. This is a typical setup when applying 
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genomic selection in commercial aquaculture breeding pro-
grams in which all the families are held in the nucleus and 
their sibs are recorded for hard-to-record traits such as dis-
ease resistance, carcass traits, or product quality. Such close 
relatedness is used to improve the power of genomic selection 
in commercial breeding, and our estimates of selection accu-
racy are expected to be higher than if the reference group and 
the validation group were less related (Fraslin et al., 2022b).

Secondly, we tested the power of the GEBVs of Mortality3 
to predict the phenotype of Mortality4, using all data and the 
correlation between the GEBVs and phenotypes.

Results
Heritability estimates
For all traits, we observed significant heritability estimates. 
Heritability was 0.44 to 0.58 for Weight2 and Weight3 (Table 
2). Heritability on the observed scale for mortality traits 
ranged between 0.13 and 0.25, and on the liability scale, it 
ranged between 0.20 and 0.43 (Table 2).

Phenotypic correlation
The correlation test allowed us to assess whether traits were 
significantly correlated at the phenotypic level. For the pro-
duction traits, we observed that Weight2 and Weight3 were 
positively and significantly phenotypically correlated (Table 
3) and that there was also a positive correlation of Weight2 
and Weight3 with Height/Length3. Therefore, all three produc-
tion-related traits showed a strong positive phenotypic cor-
relation among themselves.

Testing for a correlation between weight traits and mortal-
ity, we observed that Weight2 was positively and significantly 
phenotypically correlated with Mortality3, whereas the cor-
relation between Weight2 and Mortality4 was not significant. 
In contrast, the correlation between Weight2 and Mortalitytot 
was once again positive and significant. We also observed that 
Weight3 was not significantly correlated with Mortality3, but 
it was positive and significant with Mortality4 and with Mor-
talitytot. In all cases where the correlation test was significant, 
the phenotypic correlation between weight and mortality was 
positive, indicating that at the phenotypic level, heavier fish 
had a higher mortality.

For Height/Length3, we did not observe a significant cor-
relation with Mortality3, though we did observe a positive 
and significant correlation with Mortality4, and then again, 
we did not observe a significant correlation with Mortalitytot.

Finally, all mortality traits were strongly correlated. Mor-
tality3 was positively and significantly correlated with Mor-
talitytot, and Mortality4 and Mortalitytot have a correlation of 
1. Mortality3 and Mortality4 could not have a direct pheno-
typic correlation because the samples that reached Mortality4 
were all alive at Mortality3, making it impossible to calculate 
a phenotypic correlation between the two traits.

Genetic correlation
Genetic correlations broadly followed the phenotypic correla-
tions (Table 3), but all the genetic correlations of mortality 
traits with the weight traits had very large standard errors, 
thus indicating that the correlations are not significant. On 
the other hand, Weight2 was positively and significantly genet-
ically correlated with Weight3 and Height/Length3 (Table 
3). Weight3 was also positively and significantly genetically 
correlated with Height/Length3. Mortality3 was significantly 
genetically correlated with Mortality4 (0.90) and Mortalitytot 
(0.99). The correlation between Mortality4 and Mortalitytot 
was estimated as 1 with no standard error estimation. These 
high positive correlations imply that mortality has similar 
genetic determination across ages.

GWAS results
Multiple traits and DNA variants showed a genome-wide 
or chromosome-wide association (Table 4 and Figures 1–6, 
the linkage disequilibrium between markers is presented in 
Supplementary Figure S1). Weight2 showed two genome-
wide significant peaks: one, significant, on chromosome 4, 
and a second on chromosome 20 (Figure 1 and Table 4). 
The amount of genetic variance explained by these genome-
wide SNPs ranges between 2.76% and 5.40%. Weight3 does 
not have any genome-wide significant SNPs, but we observe 
chromosome-wide significant peaks on chromosome 4, chro-
mosome 8, and chromosome 16, with the genetic variance 
explained by any of these SNPs ranging between 1.77% and 
6.30% (Figure 2 and Table 4).

Height/Length3 also only has chromosome-wide level asso-
ciation, with peaks on chromosome 1, chromosome 4, chro-
mosome 20, and chromosome 27, with the genetic variance 
explained by any of these SNPs ranging between 1.65% and 
3.19% (Figure 3 and Table 4). All body weight traits involve 
chromosome 4, and, to a smaller extent, chromosome 20.

For Mortality3, there is a strong genome-wide significant 
peak on chromosome 6, with 20.3% to 51.3% of the genetic 
variance explained by the significant SNPs (Figure 4 and Table 

Table 2. Variance components (σ2
g: genetic variance; σ2

e: environmental variance; σ2
p: phenotypic variance) and heritability for recorded traits (h2, both on 

the observed and on the liability scales for mortality traits)

Trait σ2
g σ2

e σ2
p

h2 on the 
observed scale

SE on the 
observed scale

h2 on the liability 
scale

SE on the 
liability scale

Weight2 1,432.14 1,857.12 3,289.26 0.44 0.04

Weight3 15,500.57 13,537.16 29,037.73 0.53 0.05

Height/Length3 1.47E−04 1.05E−04 2.53E−04 0.58 0.05

Mortality3 0.04 0.19 0.23 0.19 0.06 0.33 0.10

Mortality4 0.03 0.23 0.26 0.13 0.07 0.20 0.11

Mortalitytot 0.06 0.17 0.23 0.25 0.06 0.43 0.11
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4). Mortality4 on the other hand does not show any genome-
wide significant association, but only 3 chromosome-wide 
significant SNPs on chromosome 6 and chromosome 8, 
explaining 18.4% to 30.0% of the genetic variance (Figure 
5 and Table 4). Mortalitytot shows one single genome-wide 
peak on chromosome 6 (the genome-wide significant SNP for 
Mortality4 on Chromosome 6 is also genome-wide significant 
for Mortality3 and Mortalitytot), explaining 7.65% to 15.82% 
of the genetic variance (Figure 6 and Table 4). In all cases, the 
mortality traits involve chromosome 6, with no overlap with 
the QTL found for the weight traits.

For Mortality3, the regression slope of the most associated 
locus against mortality (b in QTL+GBLUP model) is −0.18. 
When the top SNP for Mortality3 is fitted as a categorical 
fixed effect, the result does not indicate any signs of dom-
inance (Figure 7), and the difference between the extreme 
genotypes is 32% in mortality between the two homozygote 
genotypes.

Validation of genomic evaluation with GBLUP and 
GBLUP+QTL
Genomic breeding values of Mortality3 from the GBLUP 
and GBLUP+QTL models are shown in Figure 8. In GBLUP 
model, the GEBVs range between −0.22 and 0.26, and in the 
GBLUP+QTL model between −0.21 and 0.24.

In the cross-validation, for the GBLUP model we observe 
a mean accuracy of 0.33 for Mortality3 (Figure 9). For the 
GBLUP+QTL model, the accuracy for mortality at time 3 is 
much higher, 0.61 (Figure 9). When calculating the AUC val-
ues, we observe a mean of 0.58 AUC for the GBLUP model, 
whereas the GBLUP+QTL resulted in a 0.67 mean AUC (Fig-
ure 10).

As a comparison, for Weight2 the mean accuracy was 0.56, 
and for Weight3 the mean accuracy was 0.79 (both GBLUP 
models).

The cross-validation accuracies showed large variation, 
especially in mortality traits (Figure 9). For binary traits such 
as mortality, the varying incidence of surviving fish in the 
reference group (or validation group) due to random sam-
pling of the fish into the two groups has a major impact on 
the accuracy. Moreover, due to the random sampling, the 
relationships between reference and validation groups may 
change, impacting accuracies.

When we test the predictive ability of GEBVs of Mortal-
ity3 for Mortality4, we observe a positive correlation between 
Mortality3 GEBV with Mortality4 phenotype, of 0.18 for 
the GBLUP model, and of 0.22 for the GBLUP+QTL model 
(Table 5). When we assess the predictive ability of Mortal-
ity3 GEBV for Mortality4 GEBV, calculated together using 
one single multivariate model, we observe a positive cor-
relation between Mortality3 GEBV and Mortality4 GEBV, 
of 0.77 for GBLUP model, and 0.91 for the GBLUP+QTL 
model (Table 5).

Discussion
Feasibility of using NGS for genomic selection
Our first goal, the assessment of the use of NGS for genomic 
selection in European whitefish was broadly successful. We 
were able to capture a total of 5,242 SNP markers, an aver-
age of 154 SNPs for each chromosome, with an average 
SNP spacing of 351 kilobases. This result provided sufficient Ta
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Table 4. Genome-wide significant SNPs associated with traits. P-values shown are Bonferroni corrected, unless otherwise indicated. SNP names reflect 
the internal nomenclature of our RAD sequencing, chromosome and base-pair position are based on the assembly of De-Kayne et al. (2022)

SNP name chr bp Beta SE Sample size t P −log10(p) MAF % genetic variance explained

Weight2

 � LR664347.1_2201425 4 2,201,425 15.73 2.95 1,095 5.33 1.21E−07 6.92 0.38 4.05

 � LR664347.1_2693802 4 2,693,802 13.68 2.61 1,130 5.25 1.83 E−07 6.74 0.47 3.26

 � LR664347.1_3146138 4 3,146,138 −15.67 2.55 1,108 6.15 1.09 E−09 8.96 0.49 4.28

 � LR664347.1_10995075 4 10,995,075 13.96 2.69 1,120 5.18 2.60 E−07 6.58 0.28 2.76

 � LR664347.1_14268077 4 14,268,077 15.88 2.82 1,185 5.62 2.36 E−08 7.63 0.30 3.71

 � LR664347.1_14836448 4 14,836,448 14.53 2.38 1,127 6.11 1.33 E−09 8.88 0.34 3.31

 � LR664347.1_20091990 4 20,091,990 −18.01 3.84 1,115 4.69 3.12 E−06 5.51 0.39 5.40

 � LR664363.1_38855216 20 38,855,216 15.01 3.24 1,166 4.64 3.92 E−06 5.41 0.48 3.93

Weight3

 � LR664347.1_3568737 4 3,568,737 −52.35 14.07 498 3.72 2.21 E−04 3.65 0.30 3.72

 � LR664347.1_8489919 4 8,489,919 −62.48 16.61 518 3.76 1.88 E−04 3.73 0.42 6.12

 � LR664347.1_8489934 4 8,489,934 −63.02 16.67 546 3.78 1.73 E−04 3.76 0.44 6.30

 � LR664347.1_8489940 4 8,489,940 −60.67 15.35 544 3.95 8.76 E−05 4.06 0.42 5.80

 � LR664347.1_10995075 4 10,995,075 40.77 10.48 527 3.89 1.12 E−04 3.95 0.28 2.17

 � LR664347.1_14268077 4 14,268,077 46.80 10.56 562 4.43 1.13 E−05 4.95 0.30 2.98

 � LR664347.1_14836448 4 14,836,448 34.93 9.18 518 3.81 1.59 E−04 3.80 0.34 1.77

 � LR664347.1_14962376 4 14,962,376 54.65 12.95 521 4.22 2.90 E−05 4.54 0.42 4.70

 � LR664351.1_49728274 8 49,728,274 −51.05 13.77 540 3.71 2.31 E−04 3.64 0.24 3.06

 � LR664359.1_50667396 16 50,667,396 41.52 10.80 521 3.84 1.37 E−04 3.86 0.27 2.18

 � LR664359.1_50667662 16 50,667,662 40.96 10.90 511 3.76 1.92 E−04 3.72 0.26 2.10

Height/Length3

 � LR664344.1_44836701 1 44,836,701 0.00 0.00 539 3.63 3.07 E−04 3.51 0.31 2.08

 � LR664347.1_3146138 4 3,146,138 0.00 0.00 513 3.70 2.40 E−04 3.62 0.49 1.94

 � LR664347.1_8489940 4 8,489,940 −0.01 0.00 544 3.88 1.18 E−04 3.93 0.42 5.48

 � LR664347.1_14268077 4 14,268,077 0.00 0.00 562 3.95 8.86 E−05 4.05 0.30 2.32

 � LR664347.1_14836448 4 14,836,448 0.00 0.00 518 3.69 2.44 E−04 3.61 0.34 1.65

 � LR664363.1_31261053 20 31,261,053 0.00 0.00 543 3.72 2.16 E−04 3.67 0.30 2.30

 � LR664363.1_31261188 20 31,261,188 0.00 0.00 521 3.62 3.18 E−04 3.50 0.30 2.01

 � LR664363.1_34941325 20 34,941,325 0.00 0.00 514 4.45 1.07 E−05 4.97 0.26 2.95

 � LR664363.1_36174451 20 36,174,451 0.00 0.00 538 3.83 1.41 E−04 3.85 0.40 2.60

 � LR664363.1_36909591 20 36,909,591 0.00 0.00 507 3.87 1.22 E−04 3.91 0.28 2.57

 � LR664363.1_37414088 20 37,414,088 0.00 0.00 553 3.87 1.22 E−04 3.91 0.30 2.51

 � LR664363.1_37414306 20 37,414,306 0.00 0.00 541 3.66 2.81 E−04 3.55 0.41 2.48

 � LR664370.1_1484511 27 1,484,511 0.01 0.00 525 3.83 1.46 E−04 3.84 0.21 3.19

Mortality3

 � LR664349.1_1710215 6 1,710,215 −0.18 0.03 725 6.58 9.22 E−11 10.04 0.39 36.21

 � LR664349.1_2924390 6 2,924,390 0.16 0.03 673 5.37 1.08 E−07 6.97 0.30 22.67

 � LR664349.1_2924638 6 2,924,638 0.15 0.03 683 5.09 4.57 E−07 6.34 0.30 20.32

 � LR664349.1_5024842 6 5,024,842 0.15 0.03 759 5.00 7.30 E−07 6.14 0.43 26.39

 � LR664349.1_6154414 6 6,154,414 −0.22 0.03 731 6.85 1.55 E−11 10.81 0.38 51.34

 � LR664349.1_11957954 6 11,957,954 −0.21 0.03 728 6.00 3.12 E−09 8.51 0.23 33.92

 � LR664349.1_14128348 6 14,128,348 0.15 0.03 710 5.47 6.21 E−08 7.21 0.44 23.83

 � LR664349.1_16037751 6 16,037,751 0.15 0.03 733 5.44 7.14 E−08 7.15 0.44 25.66

 � LR664349.1_16570835 6 16,570,835 −0.19 0.04 743 5.23 2.25 E−07 6.65 0.23 27.53

 � LR664349.1_16619105 6 16,619,105 −0.18 0.04 710 5.14 3.62 E−07 6.44 0.19 23.52

 � LR664349.1_21146341 6 21,146,341 0.15 0.03 726 5.06 5.27 E−07 6.28 0.35 24.11

Mortality4

 � LR664349.1_1710215 6 1,710,215 −0.16 0.04 419 3.95 9.18 E−05 4.04 0.39 18.39

 � LR664351.1_49261152 8 49,261,152 0.22 0.05 431 4.28 2.26 E−05 4.65 0.26 29.97

 � LR664351.1_49261323 8 49,261,323 0.20 0.05 449 3.91 1.06 E−04 3.98 0.27 24.73
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information for the estimation of the pairwise genomic rela-
tionship between fish, and thus the GRM. Recent studies 
based on cross-validations in multiple aquaculture species 
and different traits imply that around 2,000 to 7,000 SNPs 
are needed for accurate genomic evaluation (Kriaridou et al., 
2020; Fraslin et al., 2022b). The use of a GRM is obviously 
key for modern genomic evaluations, and our NGS approach 
allowed us to both fulfill this requirement for genomic selec-
tion and to extend our analysis to a GWAS. Yet, for more 
fine-grained QTL mapping, a higher-density SNP panel 
would be needed.

NGS offers great potential for aquaculture, especially 
for those species that do not have prior genomic informa-
tion and no off-the-shelf SNP chips (Robledo et al., 2017). 
NGS can be used to identify enough markers to calculate 
the genomic relationship matrix, bypassing the need to use a 
pedigree record. The ability to produce genome-wide SNPs is 
especially valuable because it allows to capture much of the 
genetic variance, irrespective of what is known of the actual 

genetic architecture of the target trait(s). The successful use 
of NGS for this goal has been observed, for instance, in olive 
flounder (using 12,712 SNPs, Shao et al., 2015), gilthead sea 
bream (using 12,085 SNPs, Palaiokostas et al., 2016), barra-
mundi (using 3,321 SNPs, Wang et al., 2015), bighead carp 
(using 323 SNPs, Fu et al., 2016), scallop (using 2,364 SNPs, 
Dou et al., 2016), Japanese sea cucumber (using 5,517 SNPs, 
Tian et al., 2015), and abalone (using 3,717 SNPs, Ren et al., 
2016).

The most obvious limitations of NGS are that it is much 
more computationally and labor intensive than SNP chips, 
especially in the absence of a reference genome, and that a 
good overlap between SNP sets between different genotyp-
ing runs is never guaranteed, making comparing or combin-
ing datasets complex. To obviate these two drawbacks, once 
a set of SNPs of the desired genome-wide density has been 
achieved, and a reliable reference genome is available, it is 
possible to develop custom SNP arrays and/or genotyping 
panels.

SNP name chr bp Beta SE Sample size t P −log10(p) MAF % genetic variance explained

Mortalitytot

 � LR664349.1_1710215 6 1,710,215 −0.20 0.03 631 6.54 1.28 E−10 9.89 0.39 15.82

 � LR664349.1_6154414 6 6,154,414 −0.18 0.03 637 5.06 5.46 E−07 6.26 0.38 12.40

 � LR664349.1_14128348 6 14,128,348 0.14 0.03 624 4.75 2.51 E−06 5.60 0.44 7.65

 � LR664349.1_21146341 6 21,146,341 0.15 0.03 635 4.68 3.48 E−06 5.46 0.35 9.13

SNP name: provisional SNP id; chr: chromosome; bp; base pair; beta: regression coefficient; SE: regression coefficient’ standard error; Sample size: number 
of sample in each linear model; t: t-value; P: P-value; −log10(P): −log10(P-value); MAF: minor allele frequency; % genetic variance explained: genetic 
variance explained by the SNP for the trait.

Figure 1. Manhattan plot of the −log10(P-value) of Weight2. A clear, genome-wide significant, QTL peak is visible on Chromosome 4, with a second peak 
on chromosome 20.

Table 4. Continued
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Figure 2. Manhattan plot of the −log10(P-value) of Weight3. A chromosome-wide significant QTL peak is visible on Chromosome 4, but the peak does 
not reach genome-wide significance.

Figure 3. Manhattan plot of the −log10(P-value) of Height/Length3. A chromosome-wide significant QTL peak is visible on Chromosome 4, with a second 
chromosome-wide peak on chromosome 20. Neither peak reaches genome-wide significance.
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Figure 4. Manhattan plot of the −log10(P-value) of Mortality3. A clear, genome-wide significant, QTL peak is visible on Chromosome 6.

Figure 5. Manhattan plot of the −log10(P-value) of Mortality4. No QTL peaks are visible.
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Genetic characteristics of mortality to Saprolegnia
To our knowledge, there are no previous reports on the 
genomic characterization of mortality for Saprolegnia in 

fish. Our results show that for each mortality trait, h2 was 
low to moderate on the observed scale (0.13 to 0.25), and 
h2 on the underlying liability scale showed a substantial 
increase (0.20 to 0.43), suggesting that the genetic com-
ponent for the mortality traits is actually bigger than what 
can be directly observed. These estimates are clearly higher 
than the h2 estimates of general mortality whose causes 
are unknown (h2 range 0.08 to 0.17 on the liability scale 
in rainbow trout, Vehviläinen et al., 2008; h2 range 0.07 
to 0.20 on the liability scale, also in rainbow trout, Veh-
viläinen et al., 2010).

We found a major QTL for survival to infection to this 
oomycete in whitefish, with the SNPs involved in the main 
QTL each explaining an average of 21% of the genetic vari-
ance for mortality. This was in strong contrast to the polygen-
etic nature of body weight. Immunity to infection often shows 
a monogenic or oligogenic architecture in fish (e.g., Fuji et al., 
2007; Moen et al., 2009; Houston et al., 2010; Calboli et al., 
2022; Fraslin et al., 2022a). This may be because immunity 
can have a simple mechanism that changes the level of resis-
tance, such as the case of infectious pancreas necrosis in Euro-
pean Atlantic salmon, which is almost completely determined 
by the nedd-8 locus (Pavelin et al., 2021), and potentially 
because aquaculture species have been only recently domes-
ticated and thus QTLs of large effects have not been brought 
to fixation across commercial stocks. In our study, the top 
SNP shows an additive pattern of effect with 32% difference 
in mortality between the most resistant homozygote genotype 
and the most susceptible homozygote genotype, providing 
a valuable target for selection in aquaculture settings. This 
is the first major Saprolegnia infection experienced by this 
fish stock, but the fungus causes major economic losses and 
reduces fish health in aquaculture.

Figure 6. Manhattan plot of the −log10(P-value) of Mortalitytot. A clear, genome-wide significant, QTL peak is visible on Chromosome 6.

Figure 7. Allele substitution effects for the top SNP associated with 
Mortality at time 3. The pattern is consistent with an additive effect of 
each allele substitution.
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Based on the annotation available on National Center for 
Biotechnology Information (NCBI), the QTL on chromosome 
6 overlays six different putative genes (Supplementary Table 
S1). Blasting the amino acid sequences we identified the clos-
est homologs in other species. Only for two of the putative 
genes the best homologs match has an amino acid sequence of 
a matching length, the tRNA methyltransferase and the breast 
cancer type 2 susceptibility protein, whereas the other proteins 
in the Coregonus lavaretus ‘Balchen’ assembly match only a 
fragment of the possible homologue proteins. Both the tRNA 
methyltransferase and the breast cancer type 2 susceptibility 
protein are involved in tumorigenesis in humans, which might 
suggest they play a role in the immunity to infections in Euro-
pean whitefish, though these results are observational, and 
substantial more work would be needed to infer any func-
tional effect—such as the functional genetic approach used by 
Palvelin et al. (2021) to show that is nedd-8, rather than the 
adjacent cdh1 locus controlling resistance to IPNV infection.

One of the important considerations stemming from our 
work is the importance of choosing the most informative 

time-period to collect mortality data in a breeding program. 
Because the number of fish surviving over time decreases over 
time, our ability to calculate precise GEBVs for all traits, not 
just mortality, decreases over time, as the sample size shrinks. 
In our data, we observed a strong genetic correlation between 
the mortality traits over time (Table 3), and that the genet-
ics of survival to Saprolegnia is nearly identical at all time 
points. Thus, our data suggest that using an early mortality 
to Saprolegnia measure would provide a robust proxy for all 
mortality to Saprolegnia at all times during the breeding pro-
gram. Mortality data collected before the maturity will allow 
to estimate GEBVs and make selection well in advance before 
the fish are spawning.

Importantly, while the genetic correlation between size-
based traits and mortality traits is low with large standard 
errors, the phenotypic correlations are either not significant, 
or positive and significant, suggesting that phenotypically 
larger fish at any time point are more likely to have died by 
the time the next mortality census is carried out. The low 
genetic correlations mean that both weight and mortality 

Figure 8. Genomic breeding values estimated with GBLUP and GBLUP+QTL models. In GBLUP+QTL model, the top SNP effect with genotypes AA, 
AT and TT were fitted as a fixed effect.
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can be improved simultaneously, yet care should be taken 
to track potentially correlated genetic changes in multiple 
traits.

In addition, the phenotypic correlation between weight 
and survival indicates that the phenotypically the smallest 
fish tend to die during growth, creating a selection bias in the 
data. When such selection bias occurs, it needs to be taken 
into account by including the pre-selected trait(s) recorded 
from all the individuals in a multivariate animal model (Hen-
derson, 1975; Ouweltjes et al., 1988). Hence, in the estima-
tion of genetic parameters and GEBVs as well as in GWAS, 
we always included the initial body Weight2 as a trait in all 
(multivariate) analyses.

Genetic characteristics of body size
Heritability for body weight was moderate (0.44 to 0.53) 
and of similar magnitude to what has been observed previ-
ously for this species (Kause et al., 2011), yet these estimates 
are at the higher end of the range typically observed for sal-
monids (Carlson and Seamons, 2008; Kause et al., 2022). It 
is interesting to notice that for body weight we also observe 
a QTL of high statistical significance, but for this trait, the 
amount of genetic variance explained by the SNPs included 
in the QTL is much smaller than for mortality: the SNPs 
involved in the main QTL explain an average of 3% genetic 
variance for body weight. The main QTL for body weight 
maps on the same chromosome, but roughly 25 megabases 
apart from a previously reported sex-determining QTL in 
fish in the same species complex (De-Kayne et al., 2022). In 
our GWAS results, this region is not associated with any fish 
trait we recorded.

Genomic selection for mortality to Saprolegnia
Our results highlight that, irrespective of any other consider-
ation, the benefit of testing for the presence of QTLs before 
estimating genomic breeding values is worth the extra effort 
in breeding settings. The inclusion of the QTL in genomic 
breeding value evaluation increased the accuracy of GEBVs, 
with a clear change in GEBV distribution pattern matching 
the actual QTL genotype. Estimation of GEBVs based on gen-
otype data would require only a minimum amount of extra 
computational effort to test for QTLs, because the required 
phenotypic data would need to be ascertained in any case, 
with obvious benefits in terms of potentially increased selec-
tion accuracy due to the more detailed modeling of the mode 
of inheritance.

The assumption of genomic evaluation with a genomic 
relationship matrix (GBLUP) is that SNP effects are small 
and normally distributed, but these assumptions do not 
necessarily hold in practice. When these assumptions do 
not hold, other sophisticated statistical approaches have 
been developed. Examples of these approaches are Bayes-
ian methods that can model non-normal distribution of SNP 
effects (Habier et al., 2011), weighted single step in which 
SNP effects are used to weight markers in GEBV estima-
tion (Zhang et al., 2016), and trait-specific weighted GRM 
matrices (Fragomeni et al., 2017). The major limitation of 
these approaches is that currently, these methods cannot 
be effectively implemented in multivariate analyses where 
potentially many tens of traits are analyzed together, a 
practice that is standard in routine breeding value evalua-
tion. For strongly oligogenic traits, genomic evaluation with 
MAS offers a practical solution from a breeding standpoint, 

Figure 9: Violin plot of cross-validation accuracies of mortality and weight traits in GBLUP and GBLUP+QTL models. Dark area shows the distribution of 
accuracies in 1,000 resampling runs.
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preserving the ability to use the multivariate analysis when 
the focus is purely on breeding.

For strongly oligogenic traits, such as for Saprolegnia resis-
tance here, the use of GBLUP+QTL is currently in fact an 
appealing approach. For instance, we validated the GEBV 
prediction improvement using a cross-validation approach. 
We observed an average of 0.33 in the accuracy for mortality 
calculated using the GBLUP model, but the accuracy increased 
to a mean of 0.61 for the GBLUP+QTL model, almost a dou-
bling of the predictive accuracy. Additionally, when we used 
the AUC approach, to account for the fact that mortality 
is binary trait, we observed that the mean accuracy for the 
GBLUP+QTL (0.67) is not only higher than the mean accu-
racy for the GBLUP (0.59), but it is very close to the maximum 
theoretical accuracy we can expect for this dataset, which is 
0.7 (Wray et al., 2010). Furthermore, the ability of Mortal-
ity3 GEBVs estimated with the GBLUP and GBLUP+QTL 

models to predict the Mortality4 phenotype improves from 
0.46 in the GBLUP model to 0.61 for the GBLUP+QTL. All 
these observations indicate that the GBLUP+QTL improves 
our predictive ability compared to the simpler GBLUP model. 
Of course, these results are currently limited to the present 
subset of data, and the effect of the QTL estimated in a sin-
gle fish group. The results would have to be validated over 
different generations of the breeding program to assess the 
overall, general effect of the GEBVs and QTL on survival to 
Saprolegnia.

Overall, our results indicate the value of using NGS tech-
niques for genomic selection on European whitefish aquacul-
ture, and highlight the benefit that genome-wide markers offer, 
not just for genomic selection, but for exploring the genetic 
architecture of traits under selection, and to increase the pre-
cision of the estimation of GEBVs. Additionally, we identified 
the presence of a major QTL for the resistance to Saprolegnia, 

Figure 10. Violin plot of the area under the curve (AUC) of mortality at time 3 in GBLUP and GBLUP+QTL models. Dark area shows the distribution of 
AUC in 1,000 resampling runs.

Table 5. Correlations of GEBVs of mortality 3 with mortality at time 4

Mortality3 Mortality4 GBLUP GBLUP+QTL

Correlation GEBV GEBV 0.77 0.91

Correlation GEBV Phenotype 0.18 0.22
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a common disease affecting this and many other fish species 
in aquaculture, indicating that there are opportunities to use 
genomic selection to improve resistance to Saprolegnia.

Supplementary Data
Supplementary data are available at Journal of Animal Science 
online.
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