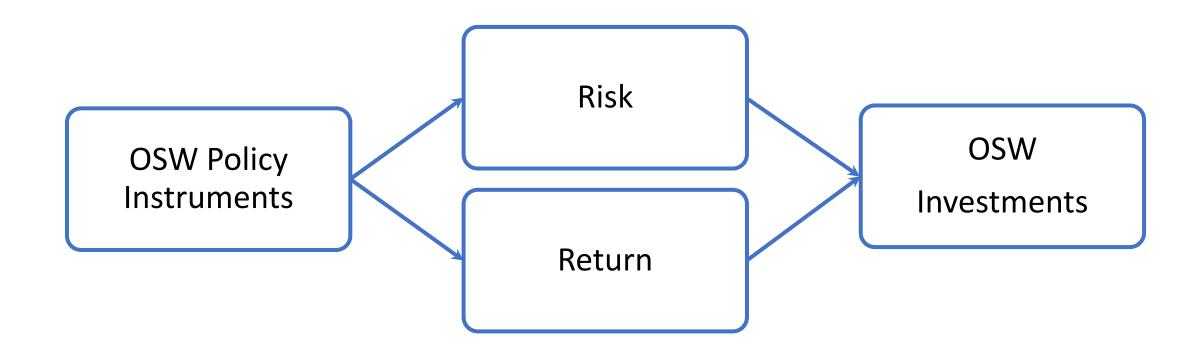


The Presentation outline

- Introduction: role of policy instruments on the cost of capital
 - Need for renewable energy investments
 - Case of offshore wind
- Simple investment model
 - Offshore wind policy instruments → risk and return
- **Estimating the impact of policy instruments on risk premiums**
 - 5-steps approach
- Discussion
- Lessons learned



- Paris Agreement: the "well below 2°C" limit
 - Zero global carbon emissions from energy use by 2060
- "Clean Energy for All Europeans" Package
 - Renewable energy sources target of 27% by 2030... or 34%?!
- Need significant renewable energy investments
 - Sometimes associated with high risk and low return → high cost of capital
 - Case of offshore wind (OSW) energy → capital-intensive asset
 - Policy instruments can help to mitigate risks and reduce financing costs

Research Question: How far can offshore wind energy policy instruments in the EU be associated with perceived risk premiums?

The Simple offshore wind investment model

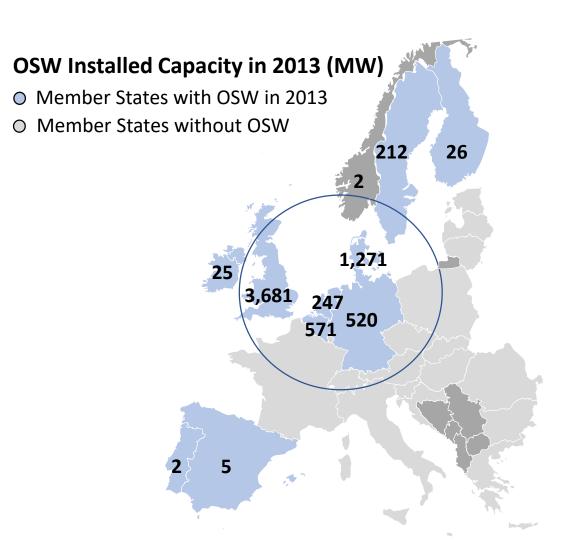
177 Offshore wind policy instruments

- Frevenue stability plays a key role in evaluating policy instruments
- Feed-in-Tariffs (FIT) represent fixed and guaranteed prices eligible renewable energy producers receive in exchange for power fed to the grid
 - Producers are not subject to tariff related risks
- Sliding Feed-in-Premiums (FIP) guaranty a premium in addition to market price
 - Producers have an incentive to adjust their production according to energy demand and price signals, increasing overall market efficiency
 - Producers exact revenues can vary creating uncertainty
- Quota Obligations with Tradable Green Certificates (TGC) create a market for renewable electricity property through governmental imposition to source a percentage electricity from renewable sources
 - for Producers typically receive a green certificate for each unit of electricity produced
 - Uncertainty about the future price of electricity and the future value of certificates

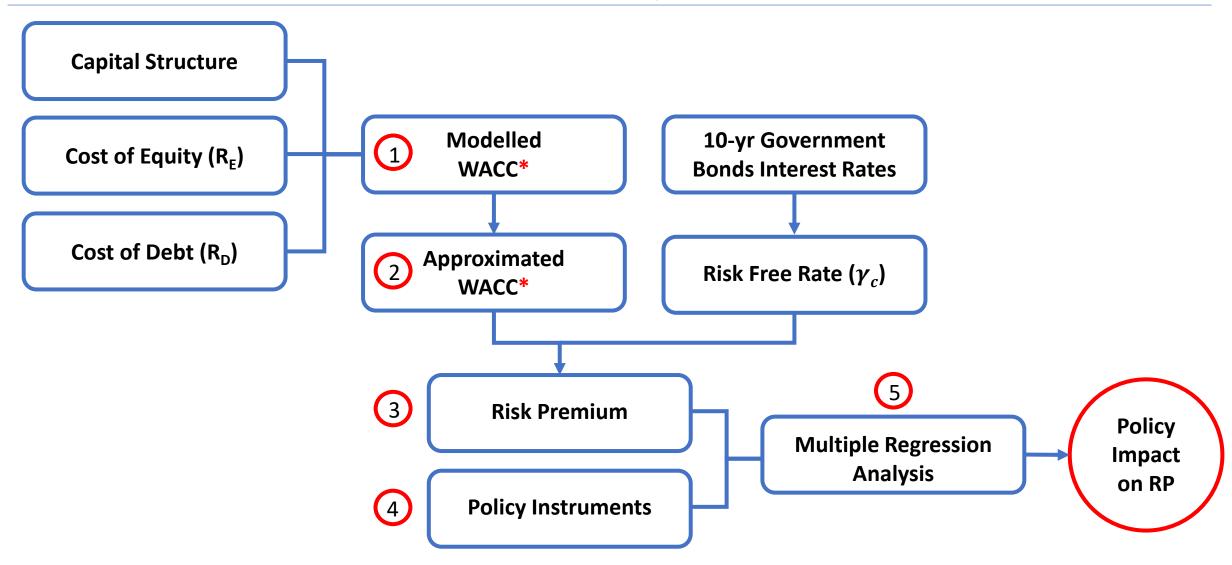
The Estimation strategy

- Objective: estimate the effect of policy instruments on the risk premium
- The Weighted Average Cost of Capital (WACC) is a measure of the cost of capital
- We assume that the risk premium can be calculated as follow:

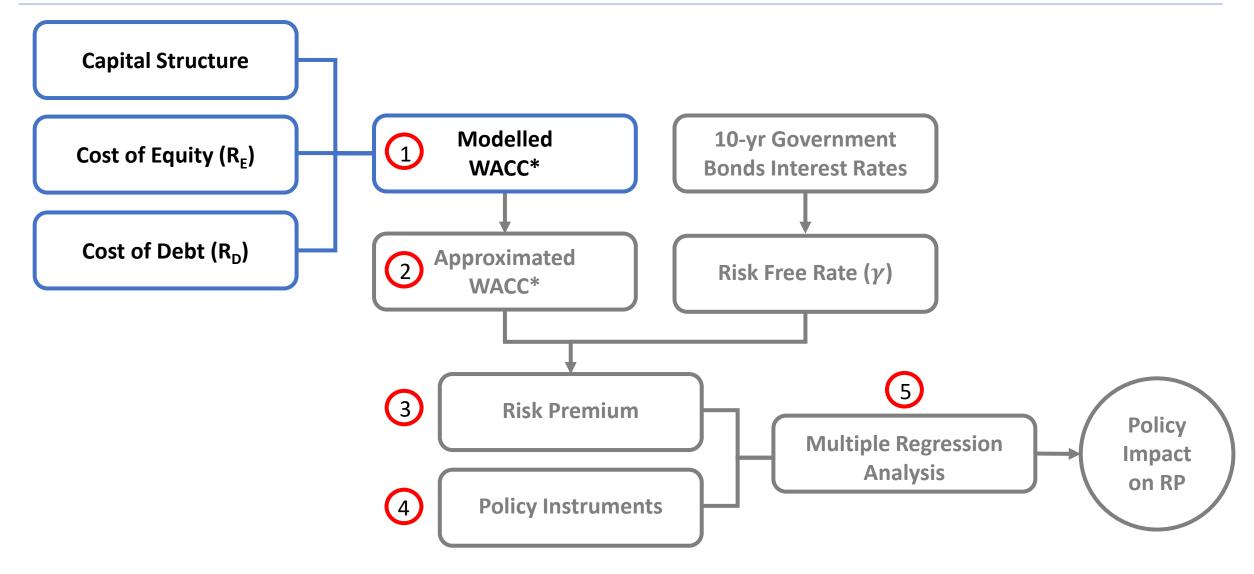
$$risk\ premium = WACC - \gamma_c$$


 γ_c = country-specific risk-free rate WACC = cost of capital

- WACC estimation is based on the theoretical model and assumptions of the DiaCore project, with 2013 as timeframe
- for the effect of policy instruments on the offshore wind risk premium can be estimated with a multiple regression analysis


The Offshore wind installed capacity in the EU

	2013	2017
Total OSW installed		
capacity in the EU	6,562 MW	15,780 MW
Relative shares	UK: 56% DK: 19% BE: 8.7% DE: 8% NL: 3.8%	UK: 43% DE: 34% DK: 8% NL: 7% BE: 6%
Number of connected turbines	2,080	4,149
Grid connected OSW farms	69	92
Location		
North Sea	66%	71%
Irish Sea	-	16%
Baltic Sea	17%	12%
Atlantic Ocean	16%	1.2%


5-Steps Approach: Estimating the impact of policy instruments on OSW risk premiums

Source: May and Neuhoff (2017); Noothout et al. (2016)

The Steps 1: Estimation of the cost of capital

The Step 1: Estimation of the cost of capital

Avg. D/E Ratio: 70/30

D: Share of Debt

E: Share of Equity

 $R_E = R_f + \beta(MRP)$

R_E: Cost of equity

R_f: Risk-free rate

B: Beta

MRP: Market risk premium

 $R_D = TS + CR + PS$

R_D: Cost of debt

TS: Term Swap Interest Rate (2.68%)

CR: Country Risk

PS: OSW project spread (4%)

Capital Structure

DiaCore

Cost of Equity (R_F)

Cost of Debt (R_D)

Modelled WACC (WACC_{model})

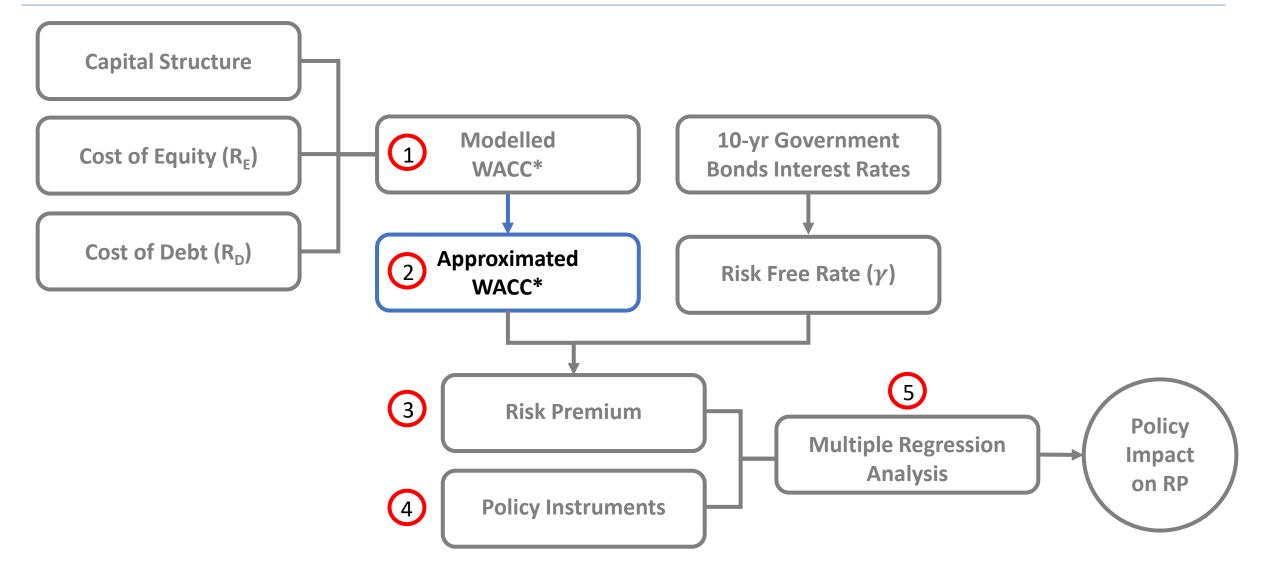
WACC = $\frac{E}{D+E} \times R_E + \left(\frac{D}{D+E} \times R_D \times (1-Tax)\right)$

WACC: Weighted Average Cost of Capital

D: Share of Debt E: Share of Equity

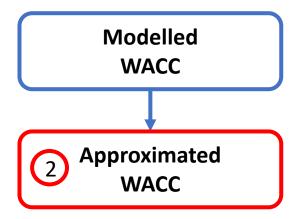
Source: Noothout et al. (2016)

Results: Estimated cost of capital


Member States with OSW in 2013	R _E * (%)	R _D (%)	WACC _{mode} (%)
Belgium	10.8	7.1	6.52
Denmark	11.2	6.9	6.98
Finland	11	7	7
Germany	9.3	6.7	6.09
Ireland	13.8	8.9	9.59
Netherlands	10.8	7.1	6.97
Portugal	15.4	11.4	10.61
Spain	13	9.7	8.65
Sweden	11.1	7.2	7.26
United Kingdom	10.4	7.1	6.95

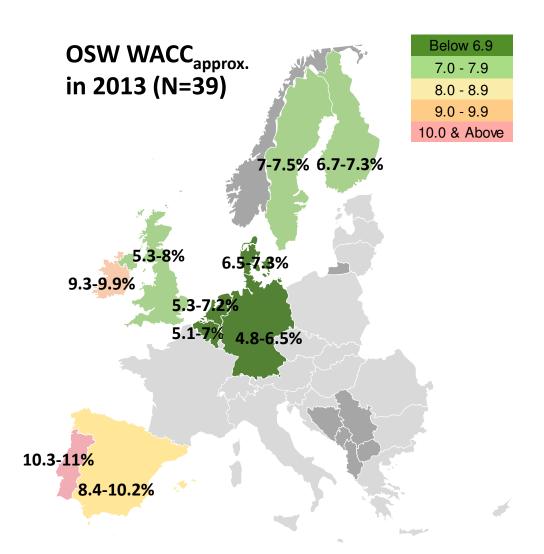
- ★ Timeframe 2013
- ★ Assumed average capital structure of 70/30 and R_E derived from DiaCore
- DE shows the lowest OSW cost of capital, whereas PT the largest

^{*} R_E taken from DiaCore, shown as indicative



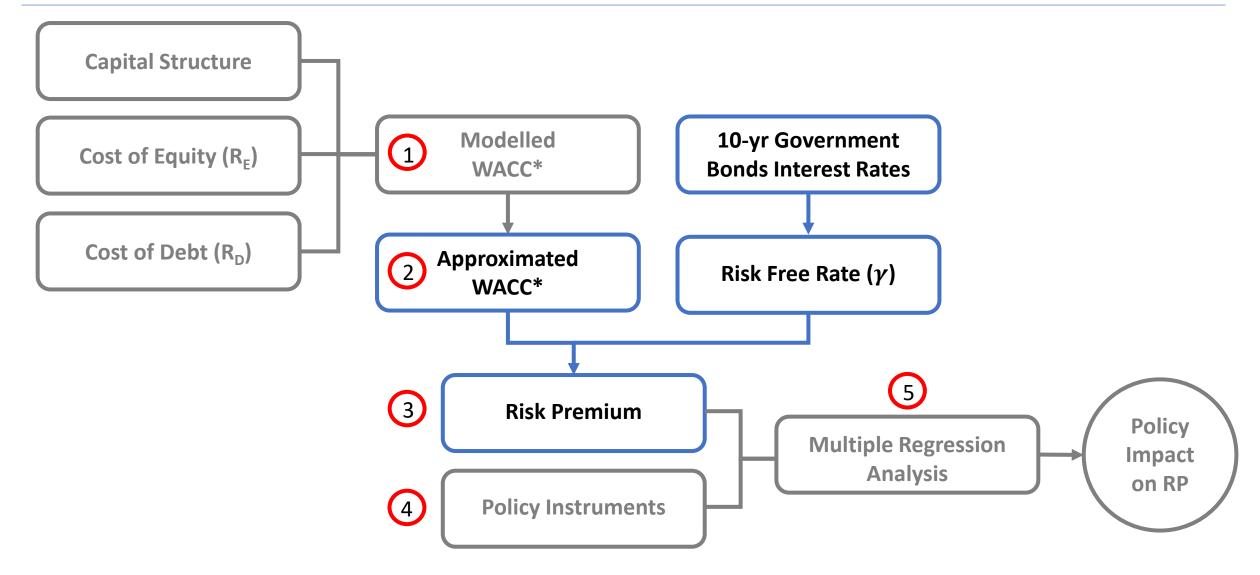
The Steps 2: Testing the cost of capital

T Step 2: Testing the cost of capital

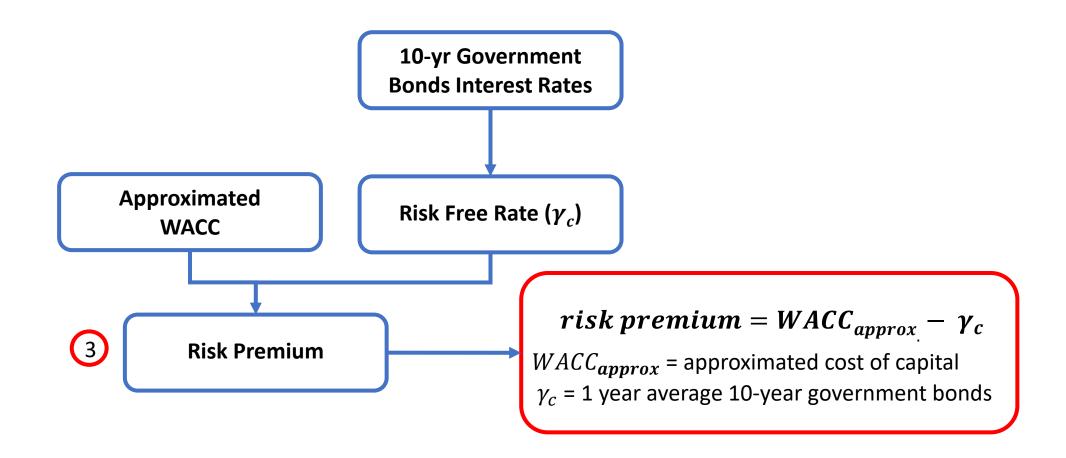


- Results tested through semi-structured interviews
 - 4 Respondent types:
 - Consultants & Academics
 - Equity providers
 - Debt providers
 - Developers or OSW farms owners
 - Variables tested:
 - Assumptions: Capital structure & R_E
 - Estimations: R_D & WACC_{model}
 - Additional co-variates: policy or retroactive changes & tenders
- ★ Relative responses → point estimates
- Respondents can give multiple interview-observations

The Results: Tested cost of capital

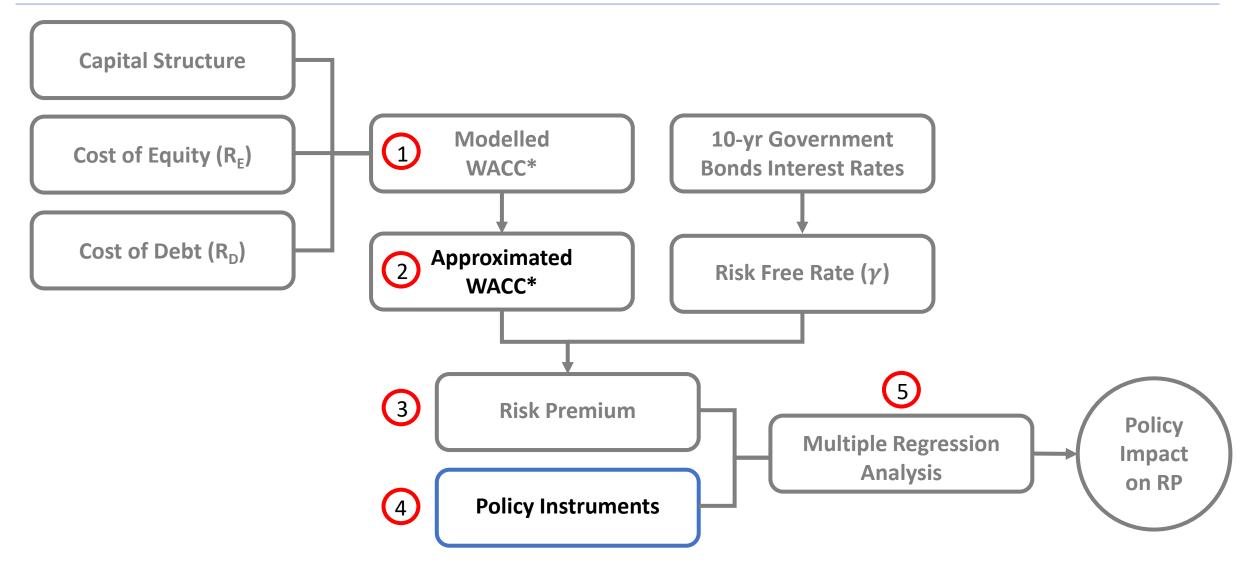

- ★ Total of 52 approximated WACC*
 - with 13 flagged values, in 13 interviews
- Lowest cost of capital
 - DE < BE < NL < DK
 - 2nd to 4th largest OSW installed capacity
- Highest cost of capital
 - PT > IE > SP
 - Marginal OSW installed capacity
- ≠ Exceptional U.K.
 - Relatively high cost of capital
 - Largest OSW installed capacity

^{*} Including 4 interview-observations from DiaCore and 13 flagged values



The Steps 3: Estimating risk premiums

The Step 3: Estimating risk premiums


Results: Estimated risk premiums

Descriptive Statistics (%) [N=39]	Variables	Mean	Std. dev.	Min	Max
	WACC _{model}	7.25	1.16	6.09	10.61
	WACC _{approx} .	7.16	1.43	4.76	10.95
	10-year gvt. bonds yields	2.43	0.91	1.61	5.37
	Risk Premium Approximated	4.72	0.84	2.72	6.54

- The approximated risk premium mean is larger than what was observed by May and Neuhoff (2017) for the case of onshore wind (RP_{approx.} = 4.57%)
- ★ The difference is however not so significant which may be explained by their larger sample size (N=53), consideration of more countries (N=23), or the challenge of 'recalling' values for respondents

The Steps 4: Identifying OSW policy instruments

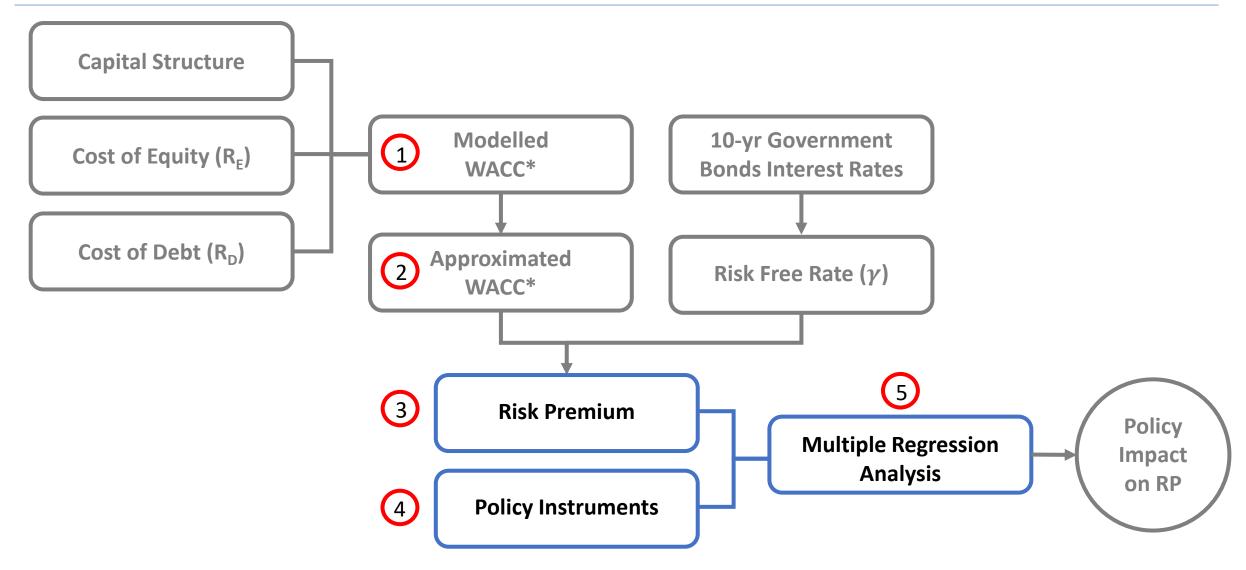
The Step 4: Identifying OSW policy instruments

Policy Instruments

- Multi-instruments systems (e.g. DE)
- Design variations
 - e.g. terms, caps, floor price, etc.
- Fenders in DK & NL*
- \neq Floor price in BE \rightarrow FIP effect
- No OSW policy scheme in IE
- Hostile investment climate in SP

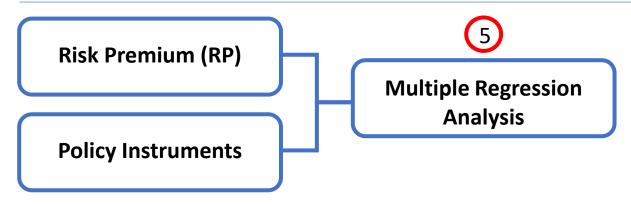
Main OSW Instrument per Member States (2013) Tradable Green Certificates (TGC) Feed-in-Premiums (FIP) Feed-in-Tariffs (FIT) No policy in place

Source: IEA; European Commission



The Descriptive statistics: OSW policy instruments

Descriptive Statistics [N=39] Policy Instruments Additional Factors Types of respondent	Variables	Categories	Frequency [N=39]	Frequency [%]
	Policy Instruments	FIT	5	12.8
		Sliding FIP	15	38.5
		TGC with floor price (TGC _w)	6	15.4
	TGC without floor price (TGC _{w/o})	9	23.1	
		No policy in place	4	10.3
	Additional Factors	Tenders	10	25.6
	Retroactive changes	3	7.7	
	Consultants & Academics	21	53.9	
	Depth providers	14	35.9	
		Equity providers	4	10.3
		Developers or OSW farm owners	0	0



117 Steps 5: Multiple regression analysis

The Step 5: Multiple regression analysis

- Multiple regression analysis in SAS
- **→ 3-Steps** multiple regression analysis:
 - 1. Model building
 - 2. Model adequacy
 - 3. Model assumptions

General Information:

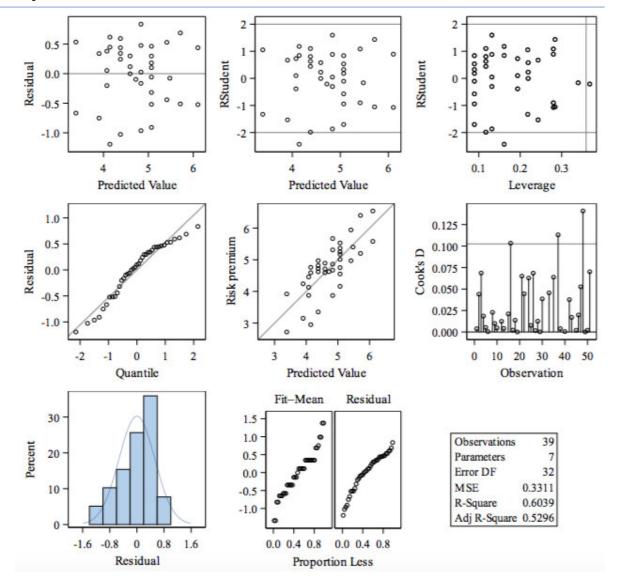
- Baseline: FIT
- Dependant variable: y = risk premium (RP)
- Independent variables:
 - x = feed-in-premium (FIP), tradable green certificates (TGC) with and without floor price (TGC_w & TGC_{w/o}) and a merged TGC (TGC_{merged})
- Co-variates (4): Tenders (TD), No policy in place (NOPD), Type of respondent (TYPD), Retroactive changes (RCD)
- Sample size: 39 interview-observations (N=39)

1. Model building

- The following variable screening methods were used to select the most important variables that contribute to the risk premium
 - **Stepwise regression [REG Procedure]**: which determines the independent variable(s) added to the model at each step using t-tests
 - All-possible-regressions [RSQUARE Procedure]: gives all possible models at each step, with suggested independent variable(s) that are associated with different criteria
- **TD** and **RCD** were found **insignificant** to explain the risk premium
- Preliminary equation:

```
risk\ premium_i = \alpha + \beta_1\ FIP + \beta_2\ TGC + X\delta + u_i
```

i: interview-observations α : v-intercept; Y, when X=0 $\beta_1 \& \beta_2$: slope of the regression line; change in Y for 1-unit change of X $X\delta$: control matrix containing [NOPD, TYPD] u_i : error term


1 2. Model adequacy

- Check the utility of the model with the [GLM Procedure] which uses the method of least square to fit general linear models
- ★ The Global F test (P-value < .0001) indicated that the model is significant for predicting risk premiums based on the group of selected variables
 </p>
- ★ The value of R-square is 0.603870, meaning approximately 60% of the variation of risk premiums can be explained by the independent variables.
- \neq The **t-test**, based on a **significance level of 10%** (α =0.1), indicates:
 - The risk premium tends to **increase** by an estimate of **01.03 to 1.51%** for **every 1-No policy in place increase**, when all the other x's are held fixed. This could be explained by **additional uncertainty** associated with **revenue and** administrative processes
- The risk premium tends to decrease with FIT and TGC_w, where all other x's are held fixed. This could be explained by the fact that fixed tariffs and the introduction of a floor price reduces price risk, and thus reduces revenue uncertainty
- The risk premium tends to increase with FIP, where all other x's are held fixed. This could be explained by the increased exposure to market risk which decreases revenue certainty

11 3. Check model assumptions

- The residuals plotted against the predicted values show no trends or patterns, which indicates that the model is fit
- The Q-Q plot shows a linear trend with a slight deviation at the tail, which suggests the normality assumption is satisfied
- The histogram shows the distribution is mound-shaped
- Studentized Residual vs. Levarage graph shows however some potential outliers and influential observations outside of the reference lines

The Potential modeling problems

- The Fit diagnostic graphs show potential outliers and influential observations outside of the reference lines
- \neq Potential multicollinearity, where the results from t-test and F test may contradict each other and the parameter estimates may have opposite signs from what is expected due to highly correlated independent variables
 - Opposite signs in effect of FIP than what was expected
- ✓ Small sample size
 - → the model still needs work!

The Discussion

- Assume an average capital structure but in reality it changes through project lifetime → hard to estimate
- \neq One respondent revealed that \mathbf{R}_{E} , taken from DiaCore, were tested with technology providers rather than with equity providers or developers
- Tested cost of capital (WACC_{approx.})
 - Overall, OSW cost of capital is higher than onshore wind (DiaCore results)
 - Effect of recall or retrieval: DiaCore WACC_{approx.} > Interviews WACC_{approx.}
 - The case of the UK: may be explained by the presence of a 'banding multiplier' or other support mechanisms
- Design-specificity in instruments may yield to different risk perceptions (e.g. capacity caps, term, etc), which makes support instruments hard to compare
- → Polarized type of respondent results may be explained by the fact that the
 OSW industry is highly competitive → need better distribution for better results

Thessons learned

- Different policy instruments lead to different risk premiums
- Design-specificity of policy instruments and high competition makes the estimation of the effect of individual schemes difficult
- The model preliminary results showed that:
 - risk premium tends to decrease when FIT and TGC_w are in place
 - risk premium tends to increase when FIP, which can be explained by the increased exposure to market risk
- Other factors such as technological innovations, experience, and policies that address the OSW supply chain also have an effect on the cost of of capital; and those should probably be addressed in future research work

The Questions

