

RESULTS FOR ENVIRONMENTAL PERFORMANCE

Andras Baky
12 February 2019

RISE Research Institutes of Sweden

Studied scenarios

STUDIED SCENARIOS

- No acidification (Reference)
- Acidification In-house
- Acidification before storage
- Acidification In-field

COUNTRIES STUDIED

- Denmark
- Estonia
- Finland
- Sweden

Tonnes of pig and cattle slurry spread annually

Country	Pig slurry	Cattle slurry	Pig & cattle slurry
Denmark	13 100 000	13 900 000	27 000 000
Estonia	464 000	1 036 000	1 500 000
Finland	2 400 000	3 760 000	6 160 000
Sweden	2 110 000	15 720 000	17 830 000

Analyses

- Emissions of ammonia (NH3)
- Saved nitrogen as ammonium nitrogen (NH4-N)
- Environmental impact of acidification compared to no acidification
 - Climate change (GWP100)
 - Potential eutrophication
 - Potential acidification

Relative decrease in ammonia emissions

Nitrogen efficiency

Relative environmental impact from slurry acidification

Conclusions

- Decreased emissions of NH3 from slurry after acidification
- Methane (CH4) emissions decreases when acidification is done before storage
- In-house had largest positive effects on NH3 emissions, increased N utilization and environmental impacts
- Effects on eutrophication and acidification impacts varied greatest between countries for In-field and varied least for In-storage
- Effects depend largely on the assumption that ratios for changed impact is according to results from Danish trials
- Differences between different countries depend on initial emissions as the effect from acidification was assumed to be the same wherever it was performed
- Uncertainty regarding emissions of nitrous oxide (N2O)
 - Uncertain information regarding direct N2O emissions
 - Potential risk for increased indirect emissions
- Need for evaluating acidification compared to other measures to reduce emissions
 - Regarding emissions, environmental impact and costs

