

Field trials in Germany

Sebastian Neumann

State Agency for Agriculture, Environment and Rural Areas of the German Federal State Schleswig-Holstein (LLUR) Christian-Albrechts-University Kiel, Institute for Crop Science and Plant Breeding

E-Mail: sneumann@gfo.uni-kiel.de

09.10.17 – 12.10.17 Riga

To evaluate slurry acidification on regional scale, experiments are conducted on:

- Micro-plot field scale (2017/2018)
- Large field scale (2017/2018)

Micro-plot pre-field trial 2016:

Großbarkau

Micro-plot field experiment (started in march 2016)

Crop: Permanent grassland (5 silage cuts)

Soil type: Haplic Luvisol (15% Clay, 61% Sand, 2.1% Corg (0-30 cm))

Nitrogen: 140 - 400 kg N per ha⁻¹ year⁻¹ (Shared out in four dressings)

Experimental Design: Randomized block experiment (n=4)

Treatments:

	Control	(0 kg N)
>	Biogas Waste	(230 kg N)
	Biogas Waste + H2SO4	(230 kg N)
	Biogas Waste / CAN	(400 kg N)
	Biogas Waste + H2SO4 / CAN	(400 kg N)
>	CAN	(140, 280, 400 kg N)
>	Urea	(400 kg N)
>	Urea + Inhibitor	(400 kg N)
	Nitrate	(400 kg N)

> pH-Value of applied digestates: 8,8

High ph-Value in biogas digestates favours NH₃-losses

DM-Yield, N-Yield and forage quality, estimated for each silage cut

Dry matter yield (5 silage cuts)

Nitrogen yield

Nitrogen use efficiency

Ammonia emissions

> Ammonia measurements is quantified for >5 days after fertilizer application

NH₃ Emissions (2. fertilization) measured with Dräger-Tube Method (DTM)

Cumulated NH₃ Emissions (4 fertilization/measuring periods)

Usage of defoamer

% - loss of mineral N

Nitrous oxide emissions

Cumulated N₂O Emissions (15.03.16 - 08.11.16)

Conclusions

Results of a pre-field trial

Due to an acidification of digestates:

- Strong reduction of ammonia emissions
- slightly higher DM- and nitrogen yields
- Increase of NUE about 10 %
- ➤ No higher nitrous oxide emissions in pure digestate treatment

BSA micro-plot field trials 2017/2018

Micro-plot trials 2017

Permanent grassland

Treatment

(Permanent grassland)

Digestate 120

Digestate 240

Digestate 360

Digestate + H2SO4 120

Digestate + H2SO4 240

Digestate + H2SO4 360

CAN 120

CAN 240

CAN 360

Urea 120

Urea 240

Urea 360

Urea stab. 120

Urea stab. 240

Urea stab. 360

Control

Winter wheat

Treatment

(Winter Wheat)

Digestate 100

Digestate 200

Digestate 300

Digestate + H2SO4 100

Digestate + H2SO4 200

Digestate + H2SO4 300

CAN 100

CAN 200

CAN 300

Control

Large-scale-experiments 2017 in collaboration with Blunk GmbH

