

Baltic Slurry Acidification

Slurry Acidification
-Swedish Field Trials 2016 & 2017, preliminary results

Stakeholder Meeting in Riga, October 11th 2017 Gunnar Lundin

Aim

To examine to which extent the acidification of cattle slurry improves the nitrogen uptake when spread on ley

Field trial 2016

Experimental farm:
Dairy farm northeast of Uppsala

Crop:
Grass-dominated ley with some legumes

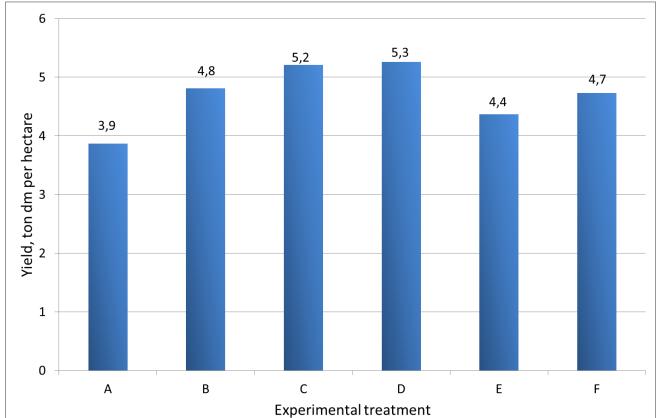
Extent:
Nitrogen utilization in the second cut (harvest)

Trial design; aimed plant nutrient supply to the second cut

Experimental treatment	Fertilizer	Nitrogen content, kg/ha	Remark
Α	Unfertilized	-	Control
В	Mineral fertilizer	30	
С	Mineral fertilizer	60	
D	Mineral fertilizer	90	
Е	Slurry, untreated	60	ammonium-N
F	Slurry, acidified	60	ammonium-N

Spreading of acidified slurry June 14th, rate 24 ton/hectar

Spreading


Placing of the slurry in lines at the bottom of the crop

Yield

Yield

Experimenta	Fertilizer	Nitrogen	Yield,	
I treatment		supply,	Kg dm/ha	Relative
		kg/ha		number
Α	Unfertilized	0	3870	100
В	Mineral fertilizer	30	4810	124
C	Mineral fertilizer	59	5210	135
D	Mineral fertilizer	89	5260	136
Е	Slurry, untreated	50	4370	113
F	Slurry, acidified	51	4730	122

Increased yield by acidifing: 380 kg/ha (i.e. 8%)

Overall conclusion 2016:

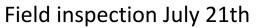
Acidification increased the yield through improved nitrogen utilization, indicating that ammonia emissions were reduced during and after spreading

Field trial 2017

The investigation was performed on the same farm and with the corresponding methodology as during 2016

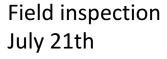
June 9th

Spreading of untreated slurry June 14th, rate 24 ton/ha



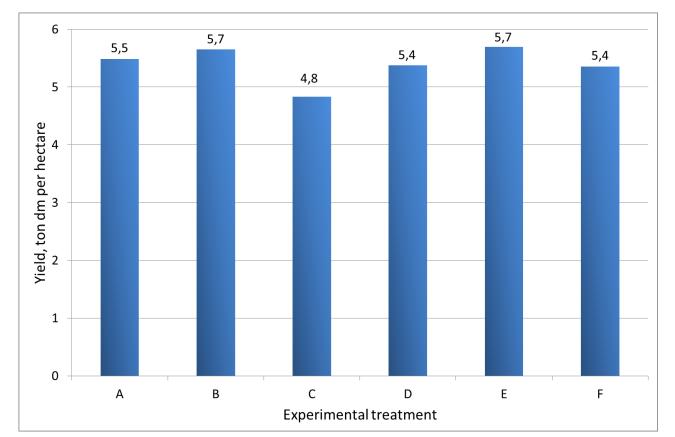
Drought:

Total precipitation to the second cut (June 9th-Aug 11th) = 53 mm



Untreated slurry Acidified slurry

Harvest on August 11th



Yield

Overall conclusion 2017:

Extensive drought led to that no significant yield increases were achieved either from mineral fertilizer or slurry, untreated as well as acidified.

