Optimización del proceso de fraccionamiento antidisolvente supercrítico de extractos de Salvia officinalis

Raquel Mura, Manuel Benítez-Quesadaa, Juan I. Pardoa, José F. Martínez-Lópezb, José S. Urietaa, Ana M. Mainara

a Grupo GATHERS, Instituto de Investigación en Ingeniería de Aragón I3A, Universidad de Zaragoza, 50018 Zaragoza ^b Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, 50009 Zaragoza

E-mail: ammainar@unizar.es

Introducción

Salvia officinalis es una planta mediterránea perteneciente a la familia Lamiaceae, sobre la cual, en los últimos años, muchas investigaciones han revelado una amplia gama de actividades farmacológicas (antioxidantes, antimicrobianas, antiinflamatorias...) [1,2] e incluso se ha mostrado que su aceite esencial tiene potencial para tratar el Alzheimer y mejorar la memoria [2]. Todas estas propiedades se han atribuido a compuestos bioactivos como monoterpenos, diterpenos y compuestos fenólicos localizados en las hojas de esta planta [3,4].

Métodos y materiales

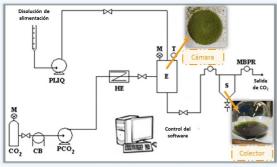


Fig. 1 – Diagrama equipo SAF. Bomba de CO₂ (PCO₃), bomba de líquidos (PLIQ), baño refrigerante (CB), intercambiador de calor (HE), cámara (E), válvula automática (ABPR), válvula maual (MBPR), colector

🎶 Material: Hojas de *S. officinalis* secas (15,77% en humedad), molidas y tamizadas. Se realizó una extracción supercrítica para desengrasar el material.

Equipo (Fig 1): Se utilizó un equipo SAF escala laboratorio. En la cámara se retienen compuestos 🎶 insolubles en la mezcla supercrítica CO₂-etanol, mientras que en el colector se recoge una disolución de los compuestos solubles en dicha mezcla. La Tabla 1 muestra los experimentos realizados y las condiciones experimentales. En la Figura 2 se observa el material obtenido en el exp 11.

Tabla 1 - Condiciones experimentales y orden según el diseño experimental

Nº experimento	Presión (bar)	Caudal (g/min)
1	80	35
2	92	17
3	92	53
4	120	10
5	120	35
6	120	35
7	120	35
8	120	35
9	120	35
10	120	60
11	148	17
12	148	53
13	160	35

Fig. 2 - Polvo precipitado en cámara (1), filtro

Resultados

En la extracción supercrítica (SCE) el rendimiento obtenido fue 4.9%. En el proceso de fraccionamiento supercrítico antidisolvente (SAF) el rendimiento total de recuperación de material alcanzó los 85.1%. En la Tabla 2 se pueden observar los rendimientos para cada experimento.

Se identificaron 3 compuestos mediante HPLC: ácido clorogénico, ácido cafeico y ácido rosmarínico (Fig 3) que quedan retenidos mayormente en la fracción de cámara. Es decir, se obtiene un polvo en dicha fracción enriquecido en antioxidantes.

🥪 El análisis estadístico muestra que los rendimientos del proceso dependen significativamente de forma lineal del caudal y de forma lineal y cuadrática de la presión de CO2. Los valores óptimos para este proceso son 10 g/min de caudal de CO₂ y 154 bar de presión.

Tabla 2 – Valores de los rendimientos (% de masa respecto a la masa del extracto de alimentación) en la cámara (Y_{PV}),

colector (T _{DV}) y rendimento total (T _{SAF})				
Run	Y _{PV} %	Y _{DV} %	Y _{SAF} %	
1	61.9	7.1	69,0	
2	64.8	17.6	82.4	
3	53.0	12.9	65.9	
4	56.6	27.8	82.4	
5	62.8	15.4	78.3	
6	64.8	17.4	82.2	
7	62.6	22.5	85.1	
8	60.0	20.8	80.8	
9	61.7	19.9	81.6	
10	59.5	16.3	75.8	
11	55.8	28.5	84.3	
12	57.2	17.8	75,0	
13	57.4	20.6	77.9	

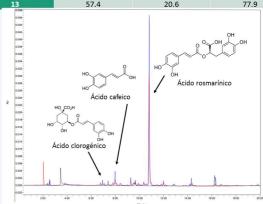


Fig. 3 – Cromatograma de la disolución de alimentación (azul), cámara (rojo) y colector (negro)

isiolografia: (]European Medicines Agency, European Union herbal monograph on Salvia officinalis L. (2016). [2]S. K. El Euch, D. B. Hassine, S. Cazaux, N. Boutouita, J. Bouvilla, South African J. Bot. 120, 253–260 (2019). [3] S. Jokic, M. Molnar, M. Jakoviljevic, K. Aladic, I. Jerkovic, J. Supercrit. Fulds. 133, 253–262 (2017). [4] N. Vosoughi, M. Gomarian, A. Ghasemi Pirfaloutti, S. Khaghani, F. Malekpoor, *Ind. Crops Prod.* 117, 366–374 (2018).