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1 Τεχνικό Δελτίο 

Η Πράξη συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (ΕΤΠΑ) 

και από Εθνικούς Πόρους της Ελλάδας και της Κύπρου 



Literature Review on Smart Water Technologies

1 Introduction
1.1 Water Distribution Challenges
Water distribution systems are faced with a number of challenges, such as aging infrastructures,
decreased water resources, population growth, reduced financial capabilities and lack of investment,
climate change, extreme events, as well as pollution and contamination events due to accidents and
malicious attacks. Due to the water-energy-food nexus [1], when the quantity and quality of water
is disrupted, this can have a cascading effect on the food chain, on energy production as well as on
health.

The drinking water industry is highly decentralized; for instance, in the USA, where there are
more than 150,000 public water systems serving more than 300 million consumers. Aging infrastruc-
ture is a challenge for these utilities; the USA Environmental Protection Agency (EPA) estimated
that, for the period 2011–2030, more than $380 billion will be invested for infrastructure improve-
ment [2]. As a consequence of having aging infrastructure, is the increase of hydraulic failures such
as leakages, pipe bursts, malfunctioning valves and pumps. In addition, quality failures can occur,
e.g. due to malfunctions in the disinfection system or due to the infiltration of contaminants from
pipe cracks and joints. These failures can downgrade the water supply quantity and quality and
can cause serious problems in health, safety and security, local economy, as well as in the operation
of society [3].

To add an economic perspective, the cost of water which lost worldwide due to leakages, metering
errors and non-billed consumption, was estimated at $15 billion per year [4]; every day it is estimated
that more than 45 million m3 of treated water is lost due to leakages in developing countries, which
could have served 200 million consumers, and in addition, almost 30 million m3 is consumed but
not billed [4].

Maintaining water quality within the regulations specified by the World Health Organization
(WHO) [5], the European Commission [6], or the U.S. Environmental Protection Agency (EPA) [7],
is an important challenge faced by water utilities which supply water to consumers through drinking
water distribution networks. However, guaranteeing a high level of water quality, continously, is not
an easy task, as faults may occur in the system which affect quality. For instance, where hydraulic
faults may downgrade the water delivery service, they may cause quality faults. These quality
faults, which may be due to the injection of certain chemical, biological or radioactive substance
within the water, will travel along the flow of water, and depending on the substance, it may cause
significant damage.

In most of the world, disinfectants such as chlorine are used in prescribed concentrations to
maintain the drinking water quality, by preventing bacteria growth and neutralizing chemical agents
[8]. According to the WHO, a free chlorine residual concentration must exist in drinking water
distribution systems, with minimum target concentration 0.2 mg

L at the point of delivery and
0.5 mg

L for high-risk circumstances [5]. It is common practice to supply water with a few tenths of
a milligram per litre of chlorine residual.
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In most countries, by law, water providers are required to control and monitor water quality
and hydraulic states, to guarantee the delivery of adequate disinfected water to all consumers. To
satisfy this, water providers collect hydraulic and quality data at various locations in the network
(either manually or by using sensors) and control the system appropriately through a series of
hydraulic and quality actuators. Through this, water providers are able to detect faults related to
the hydraulic dynamics (pressures, flows) or quality dynamics (such as disinfectant and contaminant
concentration).

Hydraulic faults, such as leakages, pipe bursts, malfunctioning pumps and valves, may interrupt
water consumption or may deteriorate water quality, due to contaminant infiltration in the system.
Most frequently, water contamination faults in water distribution systems are be due to natural
or accidental events. When accidental contamination failures occur, these can have a dramatic
effect on the society. For instance, in Milwaukee (USA) in 1993, a large-scale contamination event
occurred which was caused due to a problem in the water filtration. This triggered an outbreak of
cryptosporidiosis infecting 403,000 consumers of which 4,400 were hospitalized and in addition, 50
deaths were associated with the event [9]. Another example was in Nokia (Finland), in November
2007, 450 m3 of waste–water were injected by accident into the town’s water distribution system,
causing an outbreak of gastroenteritis. As a result, thousands were infected, hundreds were hos-
pitalized, and the authorities imposed a complete ban on all water usage for 12 weeks [10]. As
shown in Figure 1, simulation modeling of the event demonstrated that the contamination affected
a significant part of the city [11]). Another large-scale contamination event was in West Virginia
(USA), in 2014, in which an industrial solvent, contaminated 15% of the drinking water, affecting
more than 300,000 consumers; the incidence was declared by U.S. President Obama as a “federal
disaster” [12].

To provide a high-quality of service, modern water utilities have established monitoring and
control processes. For monitoring, utility operators may use sensors installed within the water
distribution system, as well as manual sampling with utility employees, to determine the occurrence
of events which may affect the normal operation of the system. By controlling the system actuators
(such as pumps, valves), water utilities are able to supply sufficient quantity of water of good
quality to consumers, while maintaining low pressures in order to reduce background leakages,
reduce energy usage as well as reconfigure the system appropriately when an event occurs in order
to reduce its impact. For example, Pressure Reduction Valves (PRV) are typically installed in the
DMA inflow pipes in order to regulate and reduce the pressure within the DMA [13]. Furthermore,
utility operators need to determinate the inputs to the hydraulic actuators (valves and pumps) as
well as to the quality actuators (e.g. chlorine booster disinfection), in order to maximize efficiency
and improve the system safety. They also need to estimate the quantity of water which will be
demanded by the consumers, and take all appropriate actions to guarantee the continuous supply
of drinking water. Moreover, utilities must make long-term planning ahead, to guarantee that the
appropriate infrastructure is in place, in parallel with the development of the urban environment.

Due to their vital role in the society and the economy, water systems are considered as criti-
cal infrastructures [14], along with power and telecommunications systems. Various terrorist and
criminal threats or attacks on water infrastructures has been recorded in the last decades [15], and
some of the most notable cases are provided below:

• In 1976, a biologist in Germany threatened to contaminate water supplies with Anthrax,
unless he was paid $8.5 million.

• In 1984, followers of the Indian guru Rajneeshee contaminated water and food supplies with
biological agents in The Dalles, Oregon, USA, to serve their political agenda. The followers
gained access to the town’s water system maps, and tried to inject contaminants to water
tanks [16].
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Figure 1: Simulated extend of contamination event in Nokia, Finland (29 November 2007, 21:00).
The injection point of the contaminant is indicated with a star. The pipe color corresponds to the
estimated percentage of waste–water in each pipe for that specific time instance.

• In 2000, a cyber-attack on a waste-water management system in Queensland, Australia, caused
the release of millions of sewage to parks and contaminated rivers.

• In 2003, the Al-Qaida called for the poisoning of drinking water in American and Western
cities.

A rising challenge in water utilities is security of their cyber-physical elements [17]. For instance,
utilities may use sensors and actuators which are connected to the internet, or are connected to
elements which may be connected to the internet. These elements may be exposed to malicious
attacks, such as unauthorized actuator control as well as creating fake sensor measurements. In ad-
dition to these, the rise of cyber-attacks on industrial systems, as it was in the case of Stuxnet, could
cause a number of attacks (denial-of-service, eavesdropping and deception) which may deteriorate
the operation or even cause system failure.

1.2 ICT for water management
Water utilities, in their effort to improve management of their systems, are exploring the use of new
methodologies and technologies, which will allow them to reduce energy usage and water loss. For
instance, water utilities can monitor their water distribution system using Supervisory Control And
Data Acquisition (SCADA) systems, gathering measurements from sensors installed throughout

3



the system, and controlling actuators [18]. In addition to automated SCADA system operations,
a number of monitoring and control events may still be conduced manually, such as the collection
of water samples for laboratory analysis, or the manual closing/opening of a valve, at various
locations and times. In addition, water utilities may utilize Geographic Information Systems (GIS)
for modelling the network structure, and may maintain databases with consumer, laboratory and
maintenance reports. Furthermore, hydraulic models of the system may be available for simulating
the behavior of the system under various conditions.

Typically water utilities monitor the minimum night flow in different parts of their network, such
as in District Metered Areas (DMA) (i.e. a sub-network of which the water inflow is measured),
and trained operators compare these minimum night-flow measurement with historical data, to
determine the occurrence of leakages[19].

Currently, a number of water utilities explore the use of wireless metering technologies, such as
Automatic Metered Readers (AMR) and Advanced Metering Infrastructure (AMI), for measuring
water consumption and communicating this information to the water utility. At the moment, AMRs
and AMIs are promoted mainly for real-time billing purposes, as well as and for alerting consumers
when their consumption increases significantly. However, these technologies can be further exploited
to address future needs, such as real-time state-estimation, water demand management, water loss
management, forecasting, event management and others [20].

In addition to periodic consumer demands collected for billing purposes, water utilities may
monitor various sensors measuring water quality and hydraulics, as well as various types of infor-
mation such as alarms, battery voltage levels, server and telephone-center logs, which produce a
large volume of data which is growing as time passes. For some applications, such as control or
event detection, this information should be available locally and in real-time, whereas in other cases,
this information should be stored for further analysis or for billing purposes.

1.3 Towards Smart Water Networks
The potential of using information and communication technologies, as well as monitoring and
control technologies, for water management, has cultivated the vision of Smart Water Networks
[21, 22], in analogy to the Smart Grid concept advocated for Power Systems [23, 24]. Smart
Water Network (SWN) is a general term which describes the envisioned new generation of water
distribution networks, building upon the state of art in information, communication, sensing, control
technologies and research results, in order to improve the efficiency, reliability and security of the
system, allowing self-monitoring and self-healing. These systems will be able to acquire and process
large volume of data from within the water network, as well as from external sources, analyze
the information and automate a significant part of monitoring and control, while achieving the
operational requirements involving energy efficiency and operational costs. Sensor measurements
and models will be linked and software/hardware can be used to process their measurements in
order to achieve different objectives.

In specific, sensors installed in the system can measure hydraulic parameters such as water-
levels in tanks, flows and pressures, while other sensors can measure quality parameters such as
disinfection residuals, pH, temperature, conductivity[25].

Sensors in SWNs will vary in cost and accuracy, may measure general characteristics (e.g. ORP,
Free Chlorine) or specific contaminants using biosensors, they may have external ownership (e.g.
consumer-owned), and may have minimal energy requirements (e.g. using energy harvesting).

Smart water utilities will also be able to integrate the database measurements with other
available heterogeneous data, in order to extract new and useful knowledge. For instance, con-
sumer reports through the call centers and through the social media, as well as measurements from
Internet-of-Things (IoT) devices, could be integrated with event detection algorithms to determine
the existence of an abnormal system status.
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The large volume of heterogeneous data produced during the operation of a SWN, either from
sensors or from models, originating from within the network or from outside the network, may
be described as “Big Data”, and can be analyzed using big-data architectures and distributed
algorithms [26, 27]. The key idea of big-data processing is that it is not feasible or efficient to
process and analyze these data on a single computational unit, but rather to employ scalable
solutions by exploiting the synergy of parallel and distributed computing, distributed databases,
as well as parallel and distributed algorithms. Therefore, a challenge for the water industry is
how to process (with respect to the available hardware) and analyze (with respect to the available
algorithms) the large volume of data produced during the operation of a water system.

A definition which summarizes the SWN, as described in this book, is the following: Smart
Water Networks refers to the use of sensing and communication technologies, along with intelligent
algorithms for modelling, simulation, control, optimization and big-data analytics, for the purpose of
enhancing efficiency and improving security, reliability, resilience, quality and robustness of drinking
water distribution systems, as well as to minimize the impact of unforeseen events.

1.4 The SmartWater2020 Project
Around 15-25% of the drinking water in Europe flowing through the water networks is lost and is
not priced due to leaks, thefts and damages. This entails a huge financial cost to water distribution
organizations. This phenomenon has a particular impact on islands of the Mediterranean, such as
Cyprus and Crete, due to water scarcity and high desalination costs. The project SmartWater2020,
”Intelligent Water Distribution Networks for Reducing Loss”, is being funded by the INTERREG
V-A ”Greece-Cyprus 2014-2020” Cooperation Programme to develop smart technologies capable
of helping water authorities in Crete (Greece) and Cyprus, to improve their water distribution
system’s monitoring and control capabilities which in turn can help reduce water losses.

The project activities involve the installation of innovative technologies such as sensors, valves,
and meters in water supply systems, their interconnection with an innovative smart water monitor-
ing software for early detection of leakage and water quality problems, as well as the development
of a pioneering pressure control system to reduce water losses.

As part of the project, a thorough needs assessment was conducted in order to extract the needs
the industrial organizations participating in the SmartWater2020 project: the Water Board of Li-
massol (Cyprus), the Water Board of Larnaca (Cyprus), the Municipal Water Supply and Sewerage
Company Malevizi (Greece) and the Water Development Department, Ministry of Agriculture, Ru-
ral Development and Environment (Cyprus). Based on the survey conducted among the partners,
the following smart water case studies have been identified to be investigated within the scope of
the project:

• Reduction of telemetry cost: this involves the use of innovative algorithmic tools for com-
pressing and reconstructing big volumes of streaming data, as well as the experimentation
with long-range and short-range wireless communication technologies.

• Improve ability in detecting and isolating leakages: this involves the use of pressure sensors
and hydraulic models, in order to detect whether water pressures are outside the expected
bounds, along with advanced algorithms for the uncertainty-aware detection and localization
of extreme events.

• Enhance capabilities in estimating water quality conditions within the network: This involves
the integration of water quality sensors with state estimators, in order to estimate quality
parameters in areas which are not monitored by sensors.
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• Reduce background leakages through pressure control: This involves solving the optimization
and control problem of deciding the most appropriate valve settings in order to reduce the
overall and worst-case pressures within the DMAs.

• Automated topology mapping through mobile sensors: This involves the experimental design
of a mobile sensor which will propagate within a testbed in order to map its unknown or
partially known structure.

1.5 Structure of report
This report presents the key enabling algorithmic methodologies and industrial technologies towards
building efficient SWNs, while being aligned with the objectives of the SmartWater2020 project.
The report is organized as follows:

• Section 2 introduces the innovative networking and communication technologies to be ex-
ploited by our proposed SWN, including both short-range and long-range technologies.

• Section 3 explores well-established software tools that are used for water distribution modelling
and simulation, covering the EPANET ecosystem and beyond.

• Section 4 is described data acquisition and processing methods. Specifically, introduces the
ways to manage and analyze data produced by the sensors or the models of the networks.

• Section 5 presents several approaches for early extreme, leakage and quality detection of events
that can be occur at any phase and time of the SWN infrastructure’s operation.

• Section 6 explores state estimation and control in water distribution networks by presenting:
leakage risk estimation as a proactive managements strategy, hydraulic and quality dynamics,
and quality and pressure controls.

• Section 7 presents the discussion and concluding remarks of the report.

6



The realization of smart water networks relies on heterogeneous network architectures that in-
terconnect the physical space (e.g., water distribution network) with the operational center for 
supporting all respective decision making processes. A typical architecture for such a network 
backbone is presented in Fig. 2, highlighting different types of connectivity and roles in the net-
work; sensor nodes deployed within the field of interest, network server for collecting and processing 
water-relevant data towards dedicated services (e.g. water network administration, on-site inspec-
tion, and water model data extraction), and gateways which act as the communication bridges 
between the sensor nodes and the network server. Sensor nodes can exchange communication for

Figure 2: The network architecture for realizing smart water networks.

network management and data relaying through underground links, while the data collected on the
gateways can in turn be collected through underground-to-aboveground communication links. The
architecture additionally considers command and control information originated from the network
server/gateways to the sensor nodes. Considering this heterogeneous architecture, in the following
paragraphs we will elaborate on the communication challenges for underground environments and
the enabling wireless technologies that can serve as the backbone for interconnecting the water
network infrastructure.

2.1 Communication challenges in underground environments
Despite its potential advantages EM-based underground communication is challenged by numerous
issues, which are not typically met in conventional, over-the-air deployments. Ambient and en-
vironmental aspects, such as temperature, weather, moisture, burial depth have often a profound
impact on the connectivity of the network.

The key factor for defining the characteristics of the EM-based underground channel is the
propagation medium, i.e. soil or air. Specifically, when the deployment considers soil as the main
propagation medium (e.g., on the outer surface of a water pipeline) the path loss behaviour is
dictated by [28]:

• the soil categorization (i.e. topsoil, referring to the first 30cm of soil, or subsoil, referring to
the 30-100cm region);
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• the volumetric water content (VWC), defined as the quantity of water in the soil, depending
both on the spatial (i.e. deployment region) as well as temporal (i.e., season) characteristics;

• the texture of the soil, dictated by the portion of air, bound water, free water and bulk soil;

The co-existence of these environmental factors signifies EM large-scale propagation phenom-
ena. Specifically, EM-waves encounter much higher attenuation in soil compared to air, with a
direct impact on the effective transmission range; for instance theoretical and empirical studies
indicate that when the 2.4GHz frequency is employed the transmission range does not exceed 0.5m.
In addition, depending on the soil categorization (topsoil or subsoil) the ground surface may cause
reflective EM-waves, with positive or negative effects on the communication. Typically, the respec-
tive communication channel adopts the principles of a two-path model, wherein reflection effects
offer constructive interference, while the existence of unpredictable obstacles (e.g., rocks) cause EM
waves to refract and scatter, thereby introducing multi-path fading in the communication chan-
nel. The temporal behavior of the soil-based EM underground communication can be captured
by the properties of a Rayleigh distribution, considering that each path in the underground chan-
nel is Rayleigh distributed and that the envelope of the signal from each path is modeled as an
independent Rayleigh distributed random variable.

The use of EM-based communications for undeground monitoring is complemented by over-the-
air ad-hoc, and infrastructure-based networks. In these architectures, two additional types of links
than undeground-to-underground links (UG2UG) are formulated, namely: (a) aboveground-to-
underground (AG2UG), and (b) underground-to-aboveground (UG2AG). Empirical studies [29, 30]
on the performance of the resulting heterogeneous networks considering a relatively small depth
(< 40cm) indicate that both AG2UG and UG2GA links are highly unsymmetrical, due to the soil-
air/air-soil interface and the multi-path effects from the soil surface. In addition, a variation of
∼30% in the VWC level can cause a degradation of ∼70% and 80% for UG2AG and AG2UG links,
respectively, thereby highlighting that the varying temporal characteristics (in terms of seasonal
and geospatial attributes) affect profoundly the UG2AG and AG2UG links. Notably, in terms of
connectivity [31, 32], these behavioral attributes in AG2UG, UG2AG, and UG2UG links result into
different levels of transmission range for each channel type.

Shifting towards underground deployments using the air as the propagation medium (e.g., within
water pipes, or manholes for water and waster water facilities), the EM-based communications face
in general less challenges than the soil-based communications. Even so, the propagation character-
istics of EM waves are significantly different from those of the terrestrial wireless channels, due to
the restrictions caused by the structures of the underground facilities. Depending on whether the
type of deployment is within a tunnel- of a room-and-pillar type of environment, two respective
channel models can be adopted [33, 34]: (a) the multi-mode model, which can completely character-
ize natural wave propagation in both near and far regions of the source for the tunnel environment,
and (b) the multi-mode model combined with the shadow fading model for the room-and-pillar
environment. Different operational parameters (e.g., frequency, size of infrastructure, relative po-
sitioning of transceivers) have different impact on each channel type. Table 1 enlists the empirical
observations made for each channel type (tunnel or room-and-pillar).

The discussion thus far highlights that the environment typically met in water infrastructures is
far from ideal for EM-based communications. Nevertheless, the advent of wireless sensors capable
of realizing the backbone of smart water networks would not be possible without the essential low-
power transceivers that allow short- or long-range communication and data transmission at low
and moderate rates. In the following paragraphs we provide an overview of both short- and long-
range enabling EM-based communication technologies, with a dedicated emphasis on the respective
wireless standards.
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Table 1: The impact of different parameters on the tunnel and room-and-pillar environment for
EM-based underground communications.

Operational
Frequency

Size of Room /
Tunnel

Antenna Posi-
tion

Electrical Pa-
rameters

Tunnel As frequency
increases the
signal attenua-
tion decreases
⇒ the length of
the fast fluctu-
ating region is
increased

Larger tunnels
prolong fast
fluctuating re-
gion • Wide-low
tunnel: the
horizontal po-
larized antenna
is preferred ←→
Narrow-high
tunnel: the
vertical polar-
ized antenna is
preferred

TX antenna
placed near the
tunnel center:
position of
RX antenna
does not af-
fect the signal
(significant
attenuation’s
of RX power)
←→ TX an-
tenna placed
near the tunnel
walls: small
attenuation if
RX antenna is
placed at cen-
ter, significant
attenuation if
RX antenna
is placed near
walls

Electrical pa-
rameters of
tunnel air can
be considered
the same as
those of normal
air ⇒ no influ-
ence on signal
propagation

Room-
and-pillar

Similar effects as in the tunnel environment with smaller influence.
Nevertheless, compared to tunnel environments, extra multipath
fading is caused by the pillars ⇒ higher path loss is experienced
by the waves spreading in the room.
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2.2 Short-range Enabling Technologies
The de-facto enabling technology for short-range wireless communications is the IEEE standard
for Low-Rate Personal Area Networks (IEEE 802.15.4) [35], extensively employed for numerous
Wireless Sensor Networks applications, ranging from environmental and structural health moni-
toring, to health care, industrial automation, and, more recently, Smart City scenarios. From the
perspective of the OSI reference model, IEEE 802.15.4 specifies the PHY and MAC layers, defining
among others the topology and network roles for WSN; the operational ranges of frequency and
respective spectrum handling, modulation, and bit rate; the operational modes at the MAC sub-
layer including timing aspects; the interactions between different layers and different nodes (service
primitives).

Specifically, depending on the national and international spectrum regulations, IEEE 802.15.4
defines 6 operational frequency bands: (a) 868 MHz (Europe), (b) 915 MHz (USA), (c) 779 MHz
(China), (d) 950 MHz (Japan), (e) 2.4 GHz world-wide, (f) UWB, both in sub-GHz and 3-10 GHz.
Depending on the operational frequency the spread spectrum technique is also defined, ranging
from Direct Sequence Spread Spectrum (DSSS) to Parallel Sequence Spread Spectrum (PSSS) and
Chirp Spread Spectrum (CSS). Figure 3 summarizes the technical characteristics of the resulting
PHY specifications [36].

Figure 3: The IEEE 802.15.4 specifications for the PHY layer (adapted from [36]).

The standard additionally defines two types of network topologies, namely star and peer-to-peer.
Star topologies have one PAN coordinator, and define the many-to-one communication pattern. On
the other hand, peer-to-peer topologies dictate the many-to-many communication mode and as such
support more than one PAN coordinators. The role of the PAN coordinator is to act as primary
controller of the network, by controlling the association of nodes as well as initiating, terminating,
or routing communications. In addition, to allow for very low-cost low-complexity devices, IEEE
802.15.4 defines Reduced Function Device (RFD) and Full Function Device (FFD). RFDs implement
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a subset of the IEEE 802.15.4-defined primitives and cannot act as coordinator. FFDs have a full
implementation of IEEE 802.15.4 and can adopt any role in the network.

The MAC specification for the IEEE 802.15.4 defines the topology construction by the means
of passive / active channel scanning and energy detection; the association / de-association of the
devices to a specific network; the synchronization of all devices to network beacons, whenever
applicable. Driven by the diversity of the application scenarios, the MAC specification provides
two main operational modes: (a) non-beacon enabled, (b) beacon-enabled. The non-beacon enabled
mode employs the CSMA /CA mechanism for accessing the channel, while all devices operating
within the network are treated as peers. Operation over the beacon-enabled mode relies on the
network synchronization, which is dictated by the coordinator, in the form of periodic beacon
transmissions, defining the beacon intervals. Within a beacon internal during the super-frame
interval 4 nodes can either compete for accessing the channel (slotted CSMA / CA) or to transmit
their data in a contention-free manner, using pre-allocated Guaranteed Time Slots (GTS).

Figure 4: The structure of the IEEE 802.15.4 beacon interval [36].

Driven by its wide adoption, the standardization body of IEEE 802.15.4 has issued 5 major
amendments (Table 2), either for further specifying PHY regulations or providing alternative MAC
architectures. With regard to the smart water management arena, those of greater interest are

Table 2: The amendments of the IEEE 802.15.4 standard

Amendment Release Date Characteristics
IEEE 802.15.4a 2007 PHY Layer Extension to Chirp Spectrum Techniques and UWB

systems
IEEE 802.15.4c 2009 Alternative PHY Extension to support one or more of the Chinese

314-316 MHz, 430-434 MHz, and 779-787 MHz bands
IEEE 802.15.4d 2009 Alternative PHY Layer Extension to support the Japanese 950

MHz Bands
IEEE 802.15.4e 2012 MAC sub-Layer amendment to address CSMA-CA unreliability
IEEE 802.15.4f 2012 Active Radio Frequency Identification (RFID) System PHY

IEEE802.15.4a and IEEE802.15.e. Specifically, IEEE802.15.4a [37] defines an extension for the
PHY layer towards both Ultra-Wide Band (UWB) and Chirp Spread Spectrum (CSS) systems at
the 2.4GHz ISM band, for addressing challenges associated to high-precision ranging capability,
thereby targeting sensing and location mapping services over mobile/static sensors (e.g., leak or
pollution detection using mobile sensors) [38]. While the UWB PHY specification is suitable for
limited-range (< 10 m) communications at increased throughput (up to 27Mbps), the CSS PHY
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specification is ideal for applications with more relaxed data rates demands (up to 1Mbps) at longer
distances (500 m in open air). Considering in addition the robustness of CSS against disturbances
such as noise and multipath fading, the IEEE 802.15.4a CSS PHY specification and respective
products (e.g., Fig. 5) could provide an alternative for the communication backbone of smart water
networks in at data rates that exceed the nominal speed of 250Kbps.

Figure 5: CSS PHY radio module by Nanotron Technologies® [39].

The IEEE 802.15.4e [40] features functional improvements for the MAC layer associated CSMA/CA
limitations, such as unbounded delays, limited communication reliability, and no protection against
interference/fading, thereby better supporting industrial applications [41]. Briefly, the IEEE802.15.4e
considers five new MAC behavior schemes (Table 3) intended for various applications, ranging from
tracking, large scale deployments, and process automation. Out of these MAC modes, the Time
Slotted Channel Hopping (TSCH) has rapidly gained popularity for industrial applications, as it
provides increased network capacity (multi-channel and channel hopping), high reliability, and pred-
icable latency (time-slotted access). In a nutshell, TSCH exploits the number of available channels
(e.g., 16 for a typical IEEE802.15.4 PHY Layer at 2.4GHz / DSSS) for representing a link between
two communicating devices by a couple specifying the timeslot in the slotframe and the channel
offset used by the devices in that timeslot. Therefore, the frequency f used for communication in
the timeslot is expressed as a function F of the total number of timeslots elapsed since the start of
the network, and the number of available channels. Notably, function F can be implemented as a
lookup table. In addition, TSCH allows the existence of shared links, accessible by more than one
transmitter. To reduce the possibility of repeated collisions over shared links, the standard defines
a re-transmission back-off algorithm, which exploits the principles of the CSMA-CA mechanism.
Expandability towards upper layers for industrial applications. Due to its structural
design, IEEE802.15.4 and its amendments have been extensively employed as the basis of integrated
industrial network standards, including among others ISA100.11a, WirelessHART® [42], and, more
recently, 6TiSCH by the Internet Engineering Task Force (IEFT) [43].

This has been primarily powered by the design and integration of the 6LoPWAN, an IEFT
standard which enables the adoption of IPv6 addressing and respective functionalities over low-
power, constrained-memory, IEEE 802.15.4 platforms [44]. Essentially, the 6LoWPAN allows long
IPv6 packets (up to 1280 bytes) to fit into short IEEE 802.15.4 frames (at most 127 bytes). To
this end, 6LoWPAN disregards sophisticated IPv6 functions to generate less complicated IPv6
functionality, while additionally considers two mechanisms, namely: (a) the compression of the
IP headers, (b) the fragmentation and reassembly, so that multiple IEEE802.15.4 packets can
make a complete IPv6 packet. The compression is based on stripping the IP packet headers to
the absolute minimum (Fig. 6), while the fragmentation and reassembly additionally considers
the routing mechanism; in case of mesh-under routing, fragments are reassembled at their final
destination only, while in the case of route-over networks data packets are reassembled at every
hop. Despite its usefulness, fragmentation essentially introduces additional overhead both within
the network and each sensor node responsible for fragmenting/reassembling packets. Therefore,
practical guidelines on the use of 6LoWPAN indicate that small-sized payloads and the use of

12



Table 3: The MAC modes of IEEE 802.15.4e standard
Mode Key characteristics Applications
Radio Fre-
quency
Identifica-
tion Blink
(BLINK)

Minimal frame containing ID •
Association is not required •
Aloha contention mechanism

Item and people identification,
location, and tracking

Asynchronous
multi-
channel
adaptation
(AMCA)

Asynchronous multi-channel
adaptation • Non-beacon en-
abled networks

Large-scale deployments for pro-
cess automation/control, infras-
tructure monitoring

Deterministic
and Syn-
chronous
Multi-
channel
Extension
(DSME)

Extending number of GTS •
Grouping multiple superframes
together • Multi-channel opera-
tion • Beacon-enabled mode

Industrial and commercial appli-
cations with hard real-time and
reliability requirements

Low Latency
Determinis-
tic Network
(LLDN)

Star topology • Short data pack-
ets & superframes • Multi-
channel operation and slotted
CSMA-CA between FFDs •
Grouped Acknowledgment

Factory automation & robotics
with low latency requirements

Time Slotted
Channel
Hopping
(TSCH)

Time-slotted access with multi-
channel and channel hopping •
Well suited for multi-hop peer-
to-peer topology

Process automation incl. wa-
ter/waste water treatments
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header compression are essential for preserving an energy conservative industrial network.

Figure 6: The IEEE802.15.4 frame format including 6LoWPAN compressed headers. The mesh
networking and fragment header are only used in case of multi-hop topologies and packet fragmen-
tation, respectively.

The 6LoWPAN has been employed as part of the ISA100.11a (2009) standard for the design
of centralized networks, based on star, star-mesh, and mesh topologies. ISA100.11a relies on the
IEEE802.15.4 PHY, while for the MAC layer it employs the TSCH mechanism. Routing capabilities
are optional, while the standard provides flexible network implementation by allowing to optimize
the stack parameters, at the expense of interoperability issues; in essence, ISA 100.11a promotes pro-
prietary, non-interoperable designs in the specification, while implementation options are not fully
specified (e.g., application interface for process control protocols)[45]. A counterpart of ISA100.11a
is WirelessHART®, relies on the IEEE802.15.4/e, without the support of 6LoWPAN[42]. Much like
ISA100.11a, WirelessHART yields a centralized network, providing the ability of creating scalable
networks by the interconnection of multiple access points. Data transmissions are based on the
combination of time division multiple access (TDMA) with channel hopping, thereby alleviating
interference effects. In contrast to ISA100.11a, WirelessHart ensures the interoperability of the
standard with previous and future releases of the HART protocol.

WirelessHART has been a field proven technology, which is however limited by its IPv6 incom-
patibility. To address this shortcoming, and additionally enable Internet connectivity for wireless,
low-cost and computationally-constrained sensor- and actuator-enabled devices in industrial pro-
cess monitoring and control applications, IETF proposed in 2013 the 6TiSCH integrated industrial
protocol stack. 6TiSCH is the latest generation of protocols exploiting TSCH technology and
considers an integrated protocol stack (Fig. 7(a)) [46, 43], which incorporates the IEEE802.15.4e
TSCH, IETF 6LoWPAN [47], RPL [48], and CoAP [49]. Specifically, the IETF 6top Protocol [50],
addresses the existing link scheduling limitations of the IEEE802.15.4e, by the means of defining
a distributed scheduling policy. This policy allows neighbor nodes to negotiate for adding or re-
moving “cells”, defined by the combination of available frequencies and the duration of network
scheduling operation. The IEFT RPL Protocol is the IPv6 routing protocol for low-power wireless
networks. RPL supports many-to-one traffic and it is suitable for a network topology where all
information needs to reach a single destination (root). As such, RPL organizes the sensor/actuator
nodes into a Destination Oriented Acyclic Graph (DODAG) (Fig. 8-top), which is essentially a tree
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(a) (b)

Figure 7: (a) The 6TiSCH protocol stack (adapted from [46, 43]), (b) 6TiSCH enabling modules:
OpenMoteTM (top), Analog Devices SmartIPTM (bottom).

routing topology, manifested by (a) the IPv6 address of the root, (b) the objective function defining
the routing decisions, i.e. defining the next hop/parent towards the root node. The flexibility of
RPL is based on the selection of the objective function for selecting the parent, and while the IEFT
standard defines both node- and link-metrics (Fig. 8-bottom), it also allows for network designers to
define customized objective functions, e.g. [51, 52]. Ultimately, the IEFT Constrained Application
Protocol (CoAP), enables web-like interactions over low-power wireless devices, which can act both
like a web-server and a web-browser. CoAP enables RESTful interactions with individual motes,
without the overhead of TCP and verbose nature of HTTP. Instead, it consists of a 4-byte header
on top of UDP. As such, a CoAP-enabled node can publish its sensor readings onto a server on the
Internet.

2.3 Long-range Technologies
Short range communications and respective industrial protocol stacks can be extremely beneficial in
numerous applications, since they combine ease of deployment and low power consumption. Never-
theless, their adoption at larger scales is limited by their communication range. As a consequence,
despite being more expensive, conventional cellular networks (e.g., GSM, GPRS, UMTS, LTE) are
often employed to provide connectivity at large-scale industrial deployments (e.g., telemetry sys-
tems for water supply networks). Even so, these technologies are designed for traditional broadband
services characterized by increased bandwidth demands, instead of low-rate, or even event-based
data transmission of sensor readings.

These limitations on both short-range technologies and cellular networks have been the driving
force for a new class of Low-Power, Wide-Area Networks (LPWAN). Typically, LPWAN complement
short-range technologies in terms of infrastructure-less networks, and inherit the basic aspects of
legacy cellular systems architecture (e.g., star topology) while stripping at the same time its most
advanced features (e.g., user mobility and resources scheduling). Notably, while typically operating
at the ISM unlicensed band, LWPAN can achieve expanded network connectivity that reaches 10-
15km in rural areas and 2-5km in urban areas, at the expense of low data rates that do not exceed
the magnitude of Kbps [53]. In all cases, the principle of increasing the communication range relies
on the increase of the link budget, or equivalently, the signal-to-noise ratio (SNR) at the receiver.
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Figure 8: Top: The RPL Destination-Oriented Directed Acyclic Graphs. Depending on the address
of the root node and the objective function, different RPL topologies can co-exist within the same
area. Bottom: IEFT standard and customized metrics for the RPL objective function.

The widely adopted spectrum handling techniques adopted to this end are either Spread Spectrum
(SS) or Ultra-Narrow-Band (UNB). Briefly, SS techniques spread the energy of the signal over a
wide band which effectively reduces the spectral power density of the signal, while Ultra-Narrow-
Band UNB employs a narrow channel width to attain higher receiver sensitivity, which in turn
increases the range achievable at the expense of reducing the achievable data rate [54].

Networks compliant to LWPAN are often based on proprietary solutions at the PHY and/or the
MAC layer, resulting into enabling technologies linked with commercial vendors such as SIGFOX®,
Ingenu®, and SemTech®. Specifically, the SIGFOX technology is a representative mature LPWAN
proprietary technology with wide adoption in industrial applications, including the domain of smart
water meters (e.g., Fig. 9-top). SIGFOX devices employ UNB wireless modulation at the Sub-GHz
ISM band (868MHz in Europe, 902 in US), and unslotted ALOHA for accessing the transmission
medium from the MAC sub-layer. In SIGFOX networks, nodes are organized into star topology,
wherein the device initiates a transmission by sending three up-link packages in sequence on three
random carrier frequencies. The base station will successful receive the package even if two of
the transmissions are lost. SIGFOX networks are characterized by extremely low data rates (in
the order to a 100bps) and payload length (12 bytes). Ingenu [55] offers a competitive LPWAN
technology, featuring operation at the 2.4GHz band, hence offering worldwide availability, while
employing Direct Sequence Spread Spectrum. As a result, Ingenu-based devices (e.g., Fig. 9-
bottom) achieve data rates that reach up to 31Kbps. The Ingenu-based networks leverage the
Random Phase Multiple Access RPMA® [56], which exploits a proprietary scheme based on Time
Division Multiple Access for improving the achieved capacity in unscheduled (e.g., event-based)
small data payloads.
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Figure 9: SIGFOX® and Ingenu-RPMA® LPWAN commercial devices. Top: SIGFOX® : (a)
The SIGFOX LPWA radio module, (b) Kamstrup’s MULTICAL® 21 smart water meter with
SIGFOX communication, (c) smart digital inputs reader for remote meter control with special flat
antenna for installation into manholes. Bottom: Ingenu-RPMA® :(d) The u-blox® radio module
implementing the Ingenu LPWAN technology, (e) the KONWPT-N7 for water pressure monitoring
featuring the Ingenu LPWAN technology, (f) the SG111 LPWAN RF Datalogger, a rugged battery
powered industrial logger for smart water meter data routing, logging, alarm monitoring with Ingenu
LPWAN technology.

In 2012 SemTech® introduced the LoRATM technology, which leverages on CSS and GFSK
modulation for long-range connectivity in different regions of the Sub-GHz ISM band (433/868Mz
for Europe, 915MHz for US, and 430MHz for Australia). Much like SIGFOX, LoRA uses duty
cycled transmissions, thereby limiting its data rates within 0.3Kbps-37.5Kbps, while achieving
communication range of up to 15km in rural areas and 5 km in urban areas. One of the key
characteristics of LoRA is the ability to use different combinations of essential PHY parameters
(bandwidth, spreading factor1, coding rate2, and transmission power) for optimizing modulation,
and thereby meeting the essential range and data requirements. The resulting configuration modes
lead to different levels of sensitivity at the side of the receiver (e.g., Fig. 10, [57]), and thereby,
offering different communication range and data rates. While the nominal transmission range of
LoRA in urban and rural areas is extended in the order of km, independent empirical studies ([58, 59]
and [60]) on the performance of LoRA technology in underground environments (specifically aired
manholes with metallic lid) highlight the impact of the environment on the effective communication
range achieved. Specifically, Kartakis et. al [58, 59], report that in experiments with the Welsh water
supply networks, the actual transmission range varies between 315m (Mode 1 of Libellium® radio
module) to 40m (Mode 10 Libellium® radio module), while reliable communication (i.e., Packet
Reception Ratio > 90%) is achievable at communication range ≃ 160m. Along similar lines, Cattani

1Spreading Factor: The number of chips utilized for the transmission by the SS mechanism. Typical values for
LoRA ∈ {26, . . . , 212}

2Error detection/correction mechanism, according to which the transmitter generates n bits of data for every m
bits of useful information. Typical values for LoRA ∈ {4/5, . . . , 4/8}
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Figure 10: The LoRATM radio module (868MHz) by Libellium ® along with the re-configurable
combinations of bandwidth, spreading factor, and coding rates, leading to different communication
modes (adapted from [57]).

et. al [60] suggest that when nodes are at the edge of their communication range, using the fastest
PHY setting and the highest transmission power is more efficient than selecting slower settings
that maximize the link quality. Remaining key empirical observations for LoRA technology are
summarized in Table 4.

While LoRA technology has been subject of extensive studies such the aforementioned, it has also
been basis for the formulation of the LoRA Alliance TM [63], comprised of big industrial players
in the arena of the Internet of Things (e.g., IBM, Microchip, Semtech), which in 2015, defined
the LoRAWAN specification, an open protocol stack to support the proprietary PHY [64]. The
LoRAWAN specification essentially defines the logical architecture of LoRA compliant networks;
the different classes of LoRA end nodes; the respective types of data/control frames and frames
formats; the rules for enabling symmetric cryptography across the LoRAWAN-compliant network.
Briefly, LoRAWAN exploits the ALOHA MAC protocol for the access of the propagation medium.
With regard to the logical architecture, the specification defines a star-of-stars topology, according
to which the end devices are connected via a single-hop LoRa link to one or many gateways that, in
turn, are connected to a common network server (NetServer) via standard IP protocols (Fig. 11(a)).
The gateways are responsible for relaying messages between and the NetServer, while the end devices
may associate to more than one gateways to get access to the network. To this end, each gateway
can support up to nine LoRa channels, where each channel is defined by the combination of a
specific sub-band and level of spreading factor. In addition to the topology, LoRAWAN specification
categorizes the end devices, into three categories, namely Class A (All), Class B (Beacon), and
Class C (Continuously Listening) (Fig. 12). Specifically, Class A devices allow for bi-directional
communications, according to which, each uplink transmission is followed by two short optional, low-
priority downlink receive windows, employing the ALOHA MAC rules. This Class A operation is
the lowest power end-device system for applications that only require downlink communication from
the server shortly after the end-device has sent an uplink transmission (e.g., monitoring and optional
remote parameters reconfiguration). End-devices of Class B build on top of the functionality of
Class A for opening extra receive windows at scheduled times, based on time synchronized beacon
from the gateway (e.g., monitoring, and event-based actuation). Ultimately, end-devices in Class C
are characterized by continuously open downlink communication with the NetServer, which is only
deactivated during uplink communications. Class C end-devices offer more sophisticated options
for downlink communication (e.g., periodic, high-priority actuation) at lower end-to-end latency
and the expense of increased energy consumption.

While LoRA/LoRAWAN has started gaining wide adoption for providing industrial solutions in
unlicensed bands, including water quality monitoring, e.g. Fig. 13, the 3rd Generation Partnership
Project (3GPP) [65] published in 2016 the Narrow Band-Internet of Things (NB-IoT) standard,
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Table 4: Summary of PHY settings and parameters for LoRA and their impact on communication
performance (adapted from [59, 60, 61, 62]).

Parameter Effects
Bandwidth Higher bandwidths allow for transmitting packets at higher data

rates (1kHz = 1kbps) but reduce receiver sensitivity and commu-
nication range

Spreading
Factor

Big spreading factors increase the signal-to-noise ratio sensitivity,
augmenting the communication range at the cost of longer packets
and hence a higher energy expenditure.

Coding Rate Larger coding rates increase the resilience to interference bursts
and decoding errors at the cost of longer packets and a higher
energy expenditure.

Transmission
Power

Higher transmission powers reduce the signal-to-noise ratio at the
cost of an increase in the energy consumption of the transmitter.

Payload size The communication modules perform more reliably (i.e. up to
70%) with smaller packet/payload sizes (i.e. up to 10 bytes).
Large amounts of transmitted data (e.g. more than 1MB) may
lead to high energy consumption due to the long transmission
time ⇒ The split of information into relatively small chunks is
necessary.

Duty cycle
regulations
for the ISM
band

Small duty cycle (e.g. 1% for 868MHz band) combined with large
spreading factor leads to enlarged over-the-air transmission time
(e.g., 36 s/h) and thus longer off-period duration per LoRA node.

PHY setting
(combi-
nation of
bandwidth,
spread-
ing factor,
coding rate)

At the edge of the communication range, using the fastest PHY
setting and the highest transmission power is more efficient (in
terms of data rate and power consumption) than selecting slower
settings that maximize the link quality • The static predetermina-
tion of the PHY settings limits the scalability of the LoRA network
(∼ 120 nodes per gateway in a Smart City scenario [61]).

Scalability &
payload size

For small payload size (e.g., 10bytes) an increase of the network
scale (e.g., 250 → 5000 nodes) leads to a decrease in the maxi-
mum throughput per node (e.g., 3670bytes/hour → 180bytes per
hour) [62].

offering long-range coverage at the commercial bands of the EM spectrum. NB-IoT is an evolution
of the LTE system and as such, it is operating at 832-862MHz for the downlink, 890-915MHz for
the uplink. NB-IoT is not compatible with 3G but can coexist with GSM, GPRS and LTE, and
can be supported with only a software upgrade on top of existing LTE infrastructure [54]. This
line of technology for LPWAN aims at enabling deployment flexibility, long battery life, low device
cost and complexity and signal coverage extension, which theoretically can support up to 50,000
end devices per cellular cell [66]. The reduction in cost and energy consumption is attempted by
the means of reducing the data rate and bandwidth requirements, while simplifying the protocol
design and mobility support. Notably, for a 164 dB coupling loss3, an NBIoT based radio can

3Coupling loss: The loss that occurs when energy is transferred from one circuit, circuit element, or medium to
another
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Figure 11: The LoRAWAN star-of-stars network topology.

Figure 12: The LoRAWAN categorization of end nodes into Classes A, B, and C.

achieve a battery life of 10 years when transmitting 200 bytes of data per day on average. Opposed
to LoRA/LoRAWAN, which considers a simplified protocol stack (Fig. 14(a)), the protocol stack
defined for NB-IoT is designed as a new air interface for LTE [67] (Fig. 14(b)). Briefly, the protocol
structure has been divided into control plane and user plane, while dedicated emphasis is given
on defining the detailed mechanisms for L2-layer operations. For the control plane, the NB-IoT
protocol stack considers a dedicated layer (Non-access Statrum, NAS) for authentication, security
control, mobility management, and bearer management.

NB-IoT takes both advantages of 4G/5G technology (e.g., mobility, peak rate, and user experi-
enced data transmission rate) as well as the low-power, low data-rate principles of LPWA. Empirical
studies on the coverage capacity of SIGFOX, LoRA, and NB-IoT [68] also suggest that while SIG-
FOX (LoRA) exhibits optimized performance compared to LoRA (SIGFOX) in uplink (downlink)
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Figure 13: The Libellium® smart sater end-node, implementing the LoRAWAN specification for
monitoring water quality parameters.

(a) (b)

Figure 14: (a) The LoRAWAN protocol stack. (b) The NB-IoT protocol stack (adapted from [67]).

communication, NB-IoT outperforms these two technologies, having an 95%-tile uplink failure prob-
ability of less than 4%. These kind of studies, along with the easy of interoperability with mobile
telephony operators (e.g., Vodafone ®) over LTE networks have been the driving force for a new
line of NB-IoT radio modules employed in smart metering solutions (e.g., Fig. 15) for providing
innovative solutions in the smart water arena4. Even so, the most important criticism against
NB-IoT is associated to: (a) the cost of operating in licensed bands, which eventually increases
the cost of the end-product, (b) the inability of NB-IoT to realize IoT applications that require
acknowledging of all uplink data traffic unless the application implements some form of reliability
mechanisms, thereby introducing increased application complexity and higher energy consumption.
Figure 16 summarizes all key specifications and considerations for dominating LPWA technologies.

2.4 Industrial Applications
The discussion thus far highlights the potential of both short- and long-range wireless technologies
for realizing the vision of smart water networks in a low-cost and easy-to-deploy fashion. Related

4https://www.metering.com/industry-sectors/data\_analytics/nb-iot-kamstrup-vodafone/ Kamstrup and
Vodafone achieve 98% smart meter accuracy in NB-IOT pilot. Last accessed: June 2018.
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Figure 15: The u-blox ® radio module for NB-IoT (left), and the NUmeterTM ultrasonic meter with
fully integrated NB-IoT by Water Group PTY® (right).

research and engineering efforts indeed fully or partially employ the technologies outlined in the
previous sections for addressing different aspects of smart water networks, ranging from leakage
detection, to water quality monitoring and industrial treatment. In the following paragraphs we
provide a brief overview representative practical works which has been actually deployed in relevant
environments.
Short Range Communications. Stoianov at al. [69], pioneered this field of research by the
means of Pipenet, which is considered one of the first underground platforms for leak detection
in water distribution pipelines. The scope of this Pipenet was to collect hydraulic and acous-
tic/vibration data at high sampling rates and provide the essential algorithmic toolkit for leakage
detection and isolation. From a network perspective, the project featured sensor nodes operating
at 2.4GHz /Frequency Hopping SS (Bluetooth protocol) and a GPRS-data relaying mechanism to
centralized hosts for performing leak detection. The monitoring system was deployed in Boston,
MA, US in collaboration with Boston Water and Sewer Commission and it has been continuously
operating for an extensive period (at least 12 months) in the form of small-scale field studies.
Similarly, the authors in [70] designed and developed a multimodal Wireless Underground Sensor
Network, featuring a customized IEEE 802.15.4-compliant platform for pipeline structural health
monitoring. The emphasis was on non-invasive methods for monitoring the pressure of the water
pipelines, based on Force Sensitive Resistor (FSR) technology. The platform has been tested and
validated in laboratory and field trials, while emphasizing among others on the power consump-
tion. EARNPIPE (2016) [71], is a more recent representative prototype in the arena of leakage
detection and localization based short-range (IEEE802.15.4) technologies, coupled with Predictive
Kalman Filter. Notably EARNPIPE invests on a clustering routing architecture for minimizing the
power consumption over the network, combined with a decentralized architecture for detecting leaks
over the heads of the network clusters. Shifting towards mobile architectures, TropiusNet [72] is a
IEEE802.15.4-compliant prototype for autonomous pipeline monitoring. The novelty of TropiusNet
relies on the automated in-field deployment and replacement of mobile sensors by releasing them
from the water inlet, while leveraging both natural water flow propulsion inside pipes to carry
sensor nodes, as well as coverage and connectivity algorithms for the final location of each released
sensor node. As more sensor nodes are released and deployed, the system gradually builds an
interconnected wireless sensor network covering the entire pipeline.

The use of short-range enabling technologies in the smart water arena has also been employed
for industrial water treatment [73, 74] and sewage systems [75, 76]. Specifically, the authors
in [73, 74] have designed and developed an integrated network platform based on the combina-
tion of IEEE802.15.4, IEFT 6LoWPAN, IEFT RPL (Fig. 17(a)) for the automated monitoring
and control of the concentration of biofouling in reverse osmosis membranes, typically employed in
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desalination plants. From a network perspective, this platform is further employed for the design

(a) (b)

Figure 17: (a) The IEEE8021.5.4/6LoWPAN/RPL stack for water desalination and respective
platform for deployment and operational environment [73, 74], (b) the architecture of the network
and sensor node employed for the CSONet project [75, 76].

of the automated extraction of key network conditions that affect the performance of user-defined
links in industrial water environments. Ultimately, the authors in [75, 76] propose CSOnet, a large-
scale and commercialized platform for the automated management of stormwater in sewer systems.
CSONet, has been designed to minimize pollution to a nearby river which results from excess storm
water entering the sewer system, and is comprised by 150 wireless short-range wireless sensor nodes
(Fig. 17(b)), featuring proprietary technology operating at 900MHz / DSSS. The implementation of
CSOnet resulted in effective reductions of wet weather induced sewer overflows, while at the same
time, enables visibility into the city’s sewer infrastructure.
Long Range Communications. Despite the strong presence of SIGFOX and Ingenu in the
water market arena, the use of long-range communication technologies in the context of smart wa-
ter networks has until recently relied primary in cellular and WiFi® technologies. A representative
example is the Wireless Water Sentinel project in Singapore (WaterWiSe@SG) [77], which intercon-
nected off-the-shelf water sensors for leak detection and burst events with the control centre of the
city’s Public Utilities Board. The deployment considered 25 sensor nodes, featuring a Computer-
on-Module, WiFi® communication, 2GB Storage disk, and a GPS, while the entire system operated
remotely with a stand-alone browser-based interface. Similarly, in [78], GRPS-based telemetry has
been employed for building a system for continuous monitoring and critical event detection in the
intermittent water distribution network of the city of Hurghada, Egypt. Emphasis has been given to
the design considerations for optimizing the node sensing and transmission scheduling, for reducing
power and communication load.

Shifting towards state-of-art standards for long-range communications, the authors in [79] em-
ployed LoRAWAN for creating a smart water management system in Mori, India. The objective of
the project was to monitor and improve the water quality in the region, by the means of providing
real time information to the residents of Mori and the local authorities. To this end, a small-scale
network, comprised of 7 LoRAWAN nodes has been deployed within the water supply network and
linked commercial sensors for monitoring both flow as well as quality of the water. The network
infrastructure has been complemented with cloud services for the collection, storage, and further
processing of the received data in order to: (a) provide alert mechanisms for streamlining the water
locks, and (b) deliver water data analytics services for domestic and irrigation use. Finally, in the
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context of urban water infrastructures, Kartakis et al. in [59, 58] proposed a LoRA-based network
for enabling the collection of 900 reliable pressure measurements every 15 minutes (∼1800 bytes).
Each node has been equipped with a 400mAh (∼ 5330 Joules) battery and an energy harvester (i.e
water pressure difference recharges the battery by 9 Joules per 15 minutes), for deployment in the
Welsh water supply network in Cardiff, UK.
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3 Modelling and Simulation
Water authorities, on a daily basis, striving to upgrade their networks and repair (or replace)
damaged pipes, in an attempt to mitigate the effects of pipe bursts and water loss and to maintain
the uninterrupted transport of water to their consumers. In doing so, WDNAs have in mind four
guiding principles [80]:

• Keep the quality of the water at the highest possible standards,

• Improve their service to consumers,

• Operate networks cost-efficiently,

• Maintain networks cost-efficiently.

The use of new technologies and methods for monitoring, repairing and/or replacing aging in-
frastructure for the sustainable management of WDSs, is not enough. Nowadays, as technology is
rapidly evolving, dynamic modeling of the WDSs behavior is increasingly gaining more importance,
and the modeling of a network’s deteriorating infrastructure conditions should be center-staged. In
fact, managers of water systems are looking for methodologies, which are dynamically modeling
a network’s deterioration over time and proactively devising ”replace or repair” strategies. The
ultimate goal of water authorities is the maximization of their network’s reliability and the mini-
mization of the operational and management costs, through an intelligent and efficient assessment
of their network and by use of mathematical and/or numerical models [80].

Thus, WDSs agencies are in need of a mathematical tool which would model and simulate a
WDN behavior, and by use of such mathematical models the agencies would be able to not only
monitor their networks in real time but they would also be provided with a decision support tool
for taking maintenance actions [80].

3.1 The EPANET ecosystem
In 1994, the US Environmental Protection Agency (EPA) released EPANET, which is an open
source software for modeling hydraulic and quality dynamics of a water distribution system (WDS).
EPANET is a research tool that enables understanding of the dynamics within water pipelines,
taking into account bulk flow and pipe wall reactions [81]. It examines the geometric structure of
the pipeline system along with a set of initial conditions (e.g. pipe roughness and diameter) and
rules of how the system is operated, so that it can computes flows, pressures and water quality (e.g.
disinfection concentrations and water age) throughout the network for a specific period of time.

EPANET utilizes the ”gradient algorithm” for solving the hydraulic state-estimation at each
time step [82]. For water quality the Finite Volume Method was originally utilized [83], however,
a Lagrangian approach [84] was adopted in the following release of EPANET (EPANET v2.0).
That version allowed the dynamic linking of EPANET with external software through its shared
object library. In 2015, the Open Source EPANET Initiative was established (comprised of various
academic, industrial and other stakeholders), to manage further development of the EPANET
software. An updated software (EPANET v2.1) released in 2016, while the next major version [85]
is currently under development.

EPANET, during the last 20 years, has been established as the defacto standard tool for both
industry and academia areas. Water authorities are using it to simulate possible ”what-if” scenarios
for the operational behavior of their systems. Industry exploits EPANET’s public-domain software
license to develop new products and services for the water authorities. EPANET is considered an
efficient research tool and during the last 2 decades it is used to evaluate novel algorithms in a
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variety of challenges associated with WDSs, using realistic benchmark data. It is extensively used
as a tool to facilitate research in topics such as network design optimization [86, 87], operational
optimization [88] and sensor placement [89].

The fact that EPANET is an open source software allows researchers to expand its capabilities.
At this direction, the water research community developed a number of extensions, add-ons as well
as software based on the EPANET.

EPANET can be used in two ways: (a) as a standalone executable software, or (b) as a shared
object library. As a standalone executable software, EPANET can be called through a standard
shell (e.g. Command Line in Windows). As a shared object (e.g. Dynamic Link Library for
Windows), it can be called through a programming interface by external software written in different
programming languages (such as C/C++, Python, MATLAB and Visual Basic). The external
software can make calls to specific EPANET functions, which modify system parameters, the time
series and the simulation configuration.

Researchers are using programming languages, such as MATLAB®, to design and evaluate new
methodologies and tools for the analysis of the WDSs behavior. MATLAB is a high-level program-
ming environment used for data processing and analysis. It allows development of applications in
different platforms, and it has a large number of sophisticated build-in applications for optimiza-
tion, control, signal processing etc. MATLAB enables connection to external software libraries,
which allows researchers to use tools and simulators developed originally in a different language,
such as C or C++. There are three methods of interfacing EPANET with MATLAB:

• Direct calls to the EPANET library, through the build-in function of the programming tool.
It requires the use of MATLAB’s build-in methods for loading and calling library functions
(i.e. using the loadlibrary and calllib functions).

• Use of ”wrappers” (MATLAB methods that follow similar naming conventions as the EPANET
functions) that handle the communication with the library internally. This is a higher-level
of interfacing with the library, however, it requires the user to design custom data struc-
tures. For each EPANET function, a corresponding MATLAB function is required, and new
algorithms need to be designed using those functions.

• Use of an Object-Oriented approach by defining a MATLAB Class, which provides a stan-
dardized way to handle the network structure, to call all functions as well as procedures using
multiple functions, to simulate and in general to perform different types of analysis in the
network, through the corresponding object.

Evolution of the EPANET during the last decade has been extensive and important for the
research community [90]. A number of extensions have been released, which expand EPANET’s ca-
pabilities. Such extensions are: (a) EPANET-MSX extension that allows simulation of the reaction
and transport dynamics of multiple physical / chemical / biological parameters within a WDS [91],
(b) EPANET-BAM that allows incomplete mixing in pipe junctions [92], (c) EPANET-PDX for
pressure-driven hydraulic state estimation [93] and (d) EPANET-RTX (or Real-Time EPANET)
which is open source software project to develop, distribute and share real-time analytical technolo-
gies [94].

Recently, effort was given in developing software for using EPANET through Object-Oriented
Programming interfaces, in different programming languages, such as R [95] and Python [96] . A
significant effort in utilizing Object-Oriented Programming to expand EPANET’s capabilities was
by van Zyl et al. (2003) [97], who introduced OOTEN. OOTEN is comprised of different classes
with associated methods (for instance the Class, which describes water pipes, provides functions to
return pipe parameters such as the diameter and length).
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The EPANET-MATLAB Toolkit (v2.1) is an open-source software released under the European
Union Public License (EUPL), developed at the KIOS Research and Innovation Center of Excellence
of the University of Cyprus. The Toolkit interfaces EPANET with MATLAB® to execute direct
calls to the EPANET library, to modify and to create EPANET networks, to run multi-species
simulations through EPANET-MSX, as well as to visualize the network [98]. The Sensor Placement
(S-PLACE) Toolkit is a software for computing the locations of the contaminant sensors that should
be installed in a WDS to reduce the impact risks. The S-PLACE Toolkit, which also is developed
at the KIOS Research and Innovation Center of Excellence, has been designed to be user-friendly
and suitable for both professional and the research community (Fig. 18). It is programmed in
MATLAB utilizing the EPANET software library, with a modular software architecture to make it
extensible [99].

Figure 18: The S-PLACE Graphical User Interface

Another one product of the same research center is the dbpRisk software (Fig.19) . It is an open-
source software platform for conducting simulation experiments in order to model the formation
for disinfection by-product in drinking water distribution networks under various conditions and
uncertainties. The goal is to identify the risk-level at each node location, contributing in the
enhancement of consumer safety [100].

The US EPA, in partnership with Sandia National Laboratories, developed multiple water soft-
ware tools to help support and management of WDSs. These tools are associated with:

• Network Models.

• Vulnerability Assessment.

• Sensor Placement Optimization.

• Event Detection.

• Source Inversion.

• Manual Sampling.
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Figure 19: The dbpRisk Graphical User Interface

• Resilience.

3.2 Other Modelling Tools
A group of tools supports the design, implementation, and evaluation of contamination warning
systems (CWS), which help build resilience to contamination incidents. CWS integrate multiple de-
tection strategies to localize as quickly as possible a wide range of potential contamination incidents
[94]. The TEVA-SPOT software comprises sensor placement optimization and Hydraulic / water
quality simulation and vulnerability assessment tools. It helps to identify sensor locations in a WDS
that minimize one or more objectives [101, 25, 102]. The CANARY is an event detection software
that analyzes water quality sensor data in real time and alerting the operator when anomalous data
is observed [103]. CANARY has been developed to provide both real-time, and off-line analysis
tools to aid in the development of algorithms (which aim to provide event detection and need to
be evaluated and configured properly), allowing developers to focus on the algorithms themselves,
rather than on how to read in data and drive the algorithms [104]. The Water Security Toolkit
(WST) is a suite of software tools that help provide the information necessary to help water utilities
make good decisions in minimizing the impact on human health and the economic consequences
caused by contamination incidents [94]. The WST assists in planning and evaluating response ac-
tions to terrorist attacks, natural disasters and traditional utility challenges, such as pipe breaks
and poor water quality. It is consisted of hydraulic and water quality modeling software as well as
optimization methodologies. The WST builds upon the simulation and optimization framework of
TEVA-SPOT and adds several new features [105]. It is useful in identifying [94]:

• Sensor locations to detect contamination.

• Locations in the network at which the contamination was introduced.

• Hydrants to remove contaminated water from the distribution network.
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• Locations in the network to inject decontamination agents to inactivate, remove or destroy
contaminants.

• Locations in the network to take grab samples to confirm contamination or cleanup.

• Valves to close in order to isolate contaminated areas of the network.

The Water Network Tool for Resilience (WNTR) is an open source Python™ package designed
to help water utilities investigate resilience of WDSs to hazards and evaluate resilience-enhancing
actions. WNTR provides a flexible platform for modeling both disruptive incidents and repair
strategies in WDSs. The primary modeling components in WNTR include (Klise et al., 2017):

• • Disaster models (e.g. prediction of ground movement after an earthquake)

• Fragility curves used to assign the probability of damage to network components

• Flexible controls to change the status and operation of network components

• Models to estimate leaks in the network

• PDD hydraulic simulation to model the network during low pressure conditions

• Resilience metrics to evaluate the effect of the disruption and repair strategies • Ability to
perform Monte Carlo simulations.

3.3 Industrial Applications
To date there have been many efforts aimed at improving WDSs and several commercial software
and products that target the monitoring, management and controlling of WDSs have been made
commercially available. However, this huge effort has an important shortfall for it has not lead
to an integrated approach, model or tool for the holistic management of WDNs. In addition, all
available commercial tools concerning the management of WDNs have two major drawbacks: the
high cost of ownership and the ownership of data. The purchase of such software is expensive and
some of them require specialized knowledge that entails additional costs for the water authorities,
which in most cases are not profitable organizations. Some of the available solutions are comprised
of non-open source software, which requires processing of the data by the provider / creator of the
software. This raises an important issue, as the water authorities manage confidential and sensitive
data that should not be accessible by anyone outside the water authority [80].

MIKE URBAN is a GIS based modelling software that covers all water networks in the city,
including WDSs, storm water drainage systems, and sewer collection in separate and combined
systems. Typical applications of MIKE URBAN associated with WDSs are: (i) Master planning,
(ii) System rehabilitation and pressure optimization, (iii) Leakage analysis and reduction, (iv) Fire
flow analysis and (v) Water quality risk analysis [106].

WaterGEMS provides a decision-support tool for water distribution networks. The software
models the WDS’s behavior, its reaction to operational strategies and growing as population and
demands increase. WaterGEMS has also the capability to simulate scenarios associated with fire
flow and water quality as well as to analyze criticality and energy cost. WaterGEMS provides
software tools for: (i) Intelligent planning for system reliability, (ii) Optimized operations for system
efficiency and (ii) Reliable asset renewal decision support for system sustainability [107].

InfoWater is a GIS integrated WDS modeling and management software application. InfoWater
enabling engineers and GIS professionals to work simultaneously on the same integrated platform.
It offers direct ARCGIS integration enabling engineers and GIS professionals to work simultaneously
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on the same integrated platform It allows command GIS analysis and hydraulic modeling in a single
environment using a single dataset [108].

EDAMS Solutions platform addresses productivity enhancement and cost-efficiency from inte-
grated commercial and technical management systems to data validation and the reduction and
control of non-revenue water in Water Utilities. The EDAMS range of management systems covers
the commercial, technical and planning functions of a Water Utility, and seamlessly integrates with
SCADA, GIS and ERP to provide a coherent enterprise system solution. The main packages of
the platform are: (i) GIS System, (ii) Billing and Customer Information, (iii) Maintenance Man-
agement Systems, (iv) Asset Management and Infrastructure Planning Systems and (v) Integrated
Quality Management System [109].

KISTERS Group offers a combination of software tools and provides professional software so-
lutions for the water industries. These software solutions are associated with: (i) Surface Water
Hydrology, (ii) Groundwater Hydrology, (iii) Water Quality and Aquatic Ecosystems, (iv) Meteo-
rology and Climatology, (v) Urban Water Systems and (vi) Resources Management [110].

Phoebe Innovations team specializes in various research and innovation topics linked to WDSs
monitoring and control, focusing on event diagnosis. The mission of Phoebe Innovations is to: (a)
design systems that reduce waste of resources and energy consumption, (b) provide a communication
platform between researchers and industry and (c) offer high-impact solutions to the customers.
Phoebe Innovations platform combines: (i) Cloud-based Software, (ii) Real-time State Estimation,
(iii) Real-time Event Detection and (iv) Research Commercialization [111].

4 Data Acquisition and Processing
The Data Management Module (DMM) constitutes a core component of a SWN, which aims at bet-
ter managing and analyzing data produced by the sensors or the models of the network. The main
functionalities of a DMM include the collection and processing of measurements, as well as their
high-level analysis for the detection and localization of abnormal events, in order to provide early
warnings for performing corrective actions. In this section, we focus on the efficient data acquisi-
tion and processing in SWNs, whereas the accurate detection of abnormal behaviors is examined
in Section 5.1.

As mentioned above, SWNs are subject to resource and computational constraints that make
the efficient data acquisition and processing a challenging task. More specifically, the following
problems will be addressed, that are of major importance for increasing the lifetime and analysis
performance of our SWN: (i) reduction of telemetry cost, (ii) recovery of missing data, and (iii)
time-synchronization of data streams for calculating pairwise correlations. The common charac-
teristic of these problems is the necessity to fill in missing measurements. To this end, we employ
state-of-the-art techniques, namely, matrix completion (MC) and tensor completion (TC), that
have demonstrated increased performance in various application domains, in terms of recovering
accurately the missing information.

In the case of SWNs, we discriminate between two main causes of missing data: (i) measurements
are not acquired due to sensor malfunction, or not transmitted due to network failure; (ii) missing
data positions are introduced artificially in order to increase the time resolution of a given data
stream, or to synchronize distinct data streams acquired at different sampling frequencies. Fig. 20a
illustrates the first case, where measurements are not acquired due to failures of the sensors (e.g.
limited battery) or the network (e.g. scheduling issues). Specifically, the data are arranged in the
form of a matrix, whose rows correspond to time slots and columns to sensors. That is, the ijth
element of this matrix represents the measurement in the ith time slot acquired by the jth sensor.
The second case is depicted in Fig. 20b, where, for instance, the sensors belong to two distinct
groups, namely, those that are sampling with a period of one hour and those with a period of
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two hours. Time synchronization of the sensors is required, such that the data vectors have the
same length, prior to calculating their correlation. Furthermore, reduction of the telemetry cost
is achieved indirectly for a single sensor by first sampling at a relatively low frequency and then
performing temporal super-resolution to reconstruct the artificially introduced missing entries.

(a) (b)

Figure 20: Occurrence of missing data due to: (a) sensors or network failure, (b) different sampling
frequencies.

An alternative approach for reducing the cost of telemetry is to simultaneously acquire and
compress the sensor data, thus decreasing significantly the volume of the transmitted information.
This is exactly what compressive sensing (CS) does, which is an innovative framework that has
revolutionized signal processing the recent years. In particular, the information conveyed by a signal
of length N can be represented in a highly compact way by M appropriately generated random
measurements5, where M ≪ N . A necessary condition to guarantee accurate reconstruction is that
the original signal is either sparse (or compressible) by itself or it can be sparsified in a suitable
transform domain. Then, given the highly reduced set of M random measurements, the original
signal can be reconstructed accurately by solving an appropriate optimization problem. The concept
of CS applied to a SWN scenario is shown schematically in Fig. 21.

The subsequent sections overview the mathematical formulation and key properties of ma-
trix/tensor completion techniques and compressive sensing, which constitute the core of our data
acquisition and processing module.

4.1 Missing Data Recovery and Temporal Super-resolution via Matrix
Completion

As depicted in Fig. 20, a typical way to arrange the measurements acquired by multiple sensors is
in the form of two-dimensional (2D) matrices. Due to various imperfections of the SWN, several
measurements are often missing, yielding a sparse matrix whose entries must be reconstructed
accurately before proceeding to further data analysis and decision making. Matrix completion
provides an efficient algorithmic toolkit for reconstructing the missing entries of a partially observed
matrix (ref. Fig. 22).

5We emphasize here the distinction between physical (sensor) measurements and random measurements generated
in the framework of compressive sensing. In the former case, the measurements are acquired directly by the nodes
of a network, whereas in the later, they are generated via an appropriate mathematical model.
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Figure 21: Reduction of telemetry cost using compressive sensing.

Figure 22: Schematic illustration of the MC process.

More specifically, let A denote the N × S matrix of measurements, with potentially missing
entries, where N is the number of time instants and S the number of sensors. Moreover, let Ω be
the set of indices associated with the available entries of A, that is, the measurement aij has been
acquired if (i, j) ∈ Ω, otherwise it corresponds to a missing value. A projection operator, PΩ, is
defined accordingly as follows,

PΩ(A)ij =

{
aij , if (i, j) ∈ Ω

0, if (i, j) /∈ Ω .
(1)

The redundancy of the measurements in A can be expressed by the rank of the matrix. The
rank of a matrix is defined as (a) the maximum number of linearly independent column vectors in
the matrix, or (b) the maximum number of linearly independent row vectors in the matrix. Both
definitions are equivalent. For a N × S matrix, if N < S, then the maximum rank of the matrix is
N . If N > S, then the maximum rank of the matrix is S. The rank of a matrix would be zero only
if the matrix had no elements. If a matrix had even one element, its minimum rank would be one.
If rank(A) = r, then, A can be expressed as the product of two matrices,

A = URT , (2)

where U is N × r and R is S × r. If there is the prior knowledge that A is of low rank, then,
it is possible to recover its missing entries by finding the lowest-rank matrix X, if the rank of the
completed matrix is known, which agrees with the given data. This matrix is obtained as the
solution of the following optimization problem,

min
X∈RN×S

rank(X) s.t. PΩ(X) = PΩ(A) . (3)
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The matrix completion problem is in general NP-hard [112], but there are tractable algorithms that
achieve exact reconstruction with high probability.

A number of assumptions on the sampling structure of the observed entries and the number
of sampled entries are typically made to simplify the analysis and ensure that the problem is
not underdetermined. First, in order to make the analysis more tractable, it is often assumed
that the set Ω with the indices of observed entries and fixed cardinality is sampled uniformly at
random from the collection of all subsets of entries of cardinality |Ω|. To further simplify the
analysis, Ω is constructed via Bernoulli sampling, that is, each entry is observed with probability
p. Another commonly used simplification is to assume that the entries are sampled independently
and with replacement. The second assumption refers to the estimation of a lower bound on the
number of observed entries, in order to guarantee accurate recovery of the missing entries. Given
that rank(A) = r, there is an information theoretic lower bound on how many entries must be
observed such that A can be uniquely reconstructed. Assuming, without loss of generality, that
N < S, at least 2Sr− r2 entries must be observed for matrix completion to have a unique solution.
Furthermore, there must be at least one observed entry per row and column of A. Finally, assuming
that r ≪ {N,S}, which is valid for many practical applications, the lower bound on the number of
observed entries required to prevent the problem of matrix completion from being underdetermined
is at the order of Sr log(S). The third assumption for ensuring accurate reconstruction refers to
the incoherence of A. This is to ensure that the singular vectors of A are not too sparse, in the
sense that all coordinates of each singular vector are of comparable magnitude, instead of just a
few coordinates having significantly larger magnitudes.

In the following, we overview the major methods for solving the optimization problem (3).

1. Low-Rank Approximation: This method seeks for the low-rank matrix X that is closest to
the original A in terms of the sum-of-squares distance. The associated optimization problem
is formulated as follows,

min
X∈RN×S

∥X−A∥2F s.t. rank(X) = r , (4)

where ∥X−A∥2F =
∑

i,j(xij − aij)
2. The above nonconvex problem can be solved efficiently

by using the singular value decomposition (SVD) of A,

A = UΣVT =
K∑

k=1

σkukv
T
k , (5)

where K = min{N,S}, U, V are N ×K and S ×K matrices, respectively, with orthonormal
columns, and Σ is a diagonal K ×K matrix with the nonnegative singular values on its main
diagonal sorted at decreasing order. The solution of (3) is based on the theory of Eckart-
Young, according to which,

X =

r∑
k=1

σkukv
T
k . (6)

The procedure for calculating the above low-rank matrix corresponds to a thresholding oper-
ator which maintains the r largest singular values. By taking the Lagrangian of (3) we obtain
the following regularized form,

min
X∈RN×S

(
∥X−A∥2F + λ · rank(X)

)
, (7)

where λ ∈ R is a regularization parameter. Varying the value of λ yields a different solution
to the above optimization problem. Given λ, a solution is obtained via (6) by first applying
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a hard thresholding operator on the computed singular values,

σ =

{
σk, σk ≥ γ

0, σk < γ ,
(8)

where γ =
√
λ, and then substituting in (6) those singular values (and the corresponding

singular vectors) that exceed the threshold.
In some MC algorithms, hard thresholding is replaced by a soft thresholding operator, which
shrinks the large singular values as follows,

σ =

{
σk − γ, σk ≥ γ

0, σk < γ .
(9)

This yields a gradual phasing out of the terms that just cross the threshold, which is preferable
in the case of measurements corrupted by noise with small or moderate signal-to-noise ratio
(SNR). On the other hand, in general, hard thresholding is better under strong SNR, but
worse in intermediate SNR levels.

2. Low-Rank Recovery and Nuclear Norm Minimization: We will assume that rather
than observing A directly we instead observe y = PN (A) + z where z represents noise and
PN : RMxN ⇒ RL is a linear measurement operator that acts on a matrix A by taking
standard inner products against L pre-defined matricies PN1, ..,PNL :

yi = ⟨A,PNi⟩+ zi = trace(PT
NiA) + zi =

M∑
m=1

N∑
n=1

A[m,n] PNi[m,n] + zi (10)

With the low-rank recovery problem where we are working from (possibly noisy) indirect
observations, y ≈ PN (A).
The above soft thresholding operation becomes more computationally tractable by reformu-
lating it in a variational framework. Specifically, when γ = λ

2 the output of this operation is
the solution of the following optimization problem,

min
X∈RN×S

(
∥X− y∥2F + λ · ∥X∥∗

)
, (11)

where ∥X∥∗ is the nuclear norm of X, which is equal to the sum of the singular values of X.
Unlike the rank, ∥X∥∗ is a convex function that is employed as a convex proxy of the rank
in optimization problems. This relation is motivated by the fact that the rank represents the
number of nonzero singular values, whereas the nuclear norm equals their sum. As such, the
nuclear norm is used as a relaxation of the rank function. The problem in (11) is convex, thus
any local minimum is the global minimum.

3. Iterative Hard Thresholding: Iterative hard thresholding (IHT) [113] is very similar to the
proximal algorithms used to solve the above nuclear norm minimization problem. However,
when the target matrix is of very low rank, IHT tends to converge extremely quickly. We
introduce the adjoint of PN operator, which is defined as:

P∗
N (w) =

L∑
i=1

wiPNi (12)
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The basic iteration of this method is as follows: From the current estimate Xk, first we take
a step in the direction of the gradient of ∥X−y∥22, and then we project onto the set of rank-r
matrices using the projection operator Pr,

Yk+1 = Xk − γkP∗
N (PN (X)− y) (13)

Xk+1 = Pr(Yk+1) . (14)

The Pr operator computes the top r left and right singular vectors and singular values; when
r is small compared to N and S, this can be done in significantly less time than computing
a full SVD and γk > 0.

4. Alternating Projections: The alternating projections algorithm is a memory-efficient tech-
nique, which stores the iterates in factorized form. The algorithm is characterized by a very
simple formulation and easiness of interpretation: we seek for a N × S matrix of rank r that
is consistent with y,

min
X∈RN×S

∥PN(X)− y∥22 s.t. rank(X) = r , (15)

This is equivalent to seeking for a N × r matrix L and a S × r matrix R whose product is
consistent with A, that is,

min
L∈RN×r,R∈RS×r

∥PN (LRT )− y∥22 . (16)

This optimization problem is still nonconvex, but by keeping L or R fixed, it is reduced to
a simple least-squares problem. This motivates the following iterative scheme for solving the
above optimization problem: Given the current estimates Lk and Rk, the solution is updated
as follows,

Rk+1 = arg min
R∈RS×r

∥PN (LkR
T )− y∥22 (17)

Lk+1 = arg min
L∈RN×r

∥PN (LRT
k+1)− y∥22 . (18)

Each step involves solving a linear system of equations with rN or rS variables for which we
can employ well-established numerical algorithms. The final solution tends to depend heavily
on the initialization of L and R. The simplicity and efficiency of the alternating projections
algorithm make it one of the most popular methods for large-scale matrix factorization, whilst
it generally outperforms nuclear norm minimization, especially when the rank r is very small
compared to N and S.

5. Robust Principal Component Analysis: Suppose we are given a large data matrix A,
for which we know that it may be decomposed as

A = L+ S , (19)

where L has low rank and S is sparse. Furthermore, both components are of arbitrary
magnitude. In addition, the low-dimensional column and row space of L, and even their
dimension, are unknown. Similarly, the number and locations of the nonzero entries of S
are also unknown. Thus the question is if it is possible to recover the low-rank and sparse
components both accurately and efficiently.
In the general case of data corrupted by additive noise,

A = L+N , (20)
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where N is a small perturbation matrix, the classical principal component analysis (PCA)
seeks the best, in an ℓ2 sense, rank-r estimate of L by solving

min
L∈RN×S

∥A− L∥22 s.t. rank(L) ≤ r . (21)

As mentioned before, this problem can be efficiently solved via the SVD and enjoys a number
of optimality properties when the noise N is small and independent and identically distributed
(i.i.d.) Gaussian.
PCA is arguably the most widely used statistical tool for data analysis and dimensionality
reduction today. However, its sensitivity with respect to measurements corrupted by gross
errors often puts its validity in jeopardy. Notice that a single grossly corrupted entry in A
could render the estimated low-rank matrix L̂ arbitrarily far from the true L.
To address this problem, an idealized version of robust PCA (RPCA) is considered in [114],
in which the aim is to recover a low-rank matrix L from highly corrupted measurements by
solving a tractable convex optimization problem. Let ∥A∥1 =

∑
i,j |aij | denote the ℓ1 norm

of A seen as a long vector in RN×S . Then, under rather weak assumptions, the principal
component pursuit (PCP) estimate solving

min
L∈RN×S ,S∈RN×S

∥L∥∗ + λ∥S∥1 s.t. L+ S = A , (22)

exactly recovers the low-rank L and the sparse S components. Theoretically, this is guaranteed
to work even if the rank of L grows almost linearly in the dimension of the matrix, and the
errors in S are up to a constant fraction of all entries.

4.2 Missing Data Recovery and Temporal Super-resolution via Tensor
Completion

In real-world applications, it is often necessary to store the measurements in higher-order structures,
apart from 2D matrices. For instance, in the case of a SWN infrastructure, we typically have
multiple sensors, which measure multiple modalities at different times. The acquired data can
be arranged in the form of a tensor, which is considered as a generalization of scalars (zero-order
tensors), vectors (first-order tensors) and matrices (second-order tensors). A 3D tensor, for example,
may encode the sensors in its first dimension, the type of measurements (e.g. temperature, pressure,
pH) in the second dimension, and the time in the third dimension.

For convenience, yet without loss of generality, in the following we focus on 3D tensors. Before
defining the problem of tensor completion, we first introduce some basic functions. Specifically, by
letting T ∈ RN×S×T denote a third-order tensor, the following expression is obtained by employing
the PARAFAC/CANDECOMP decomposition [115],

T =

J∑
i=1

λi (ai ◦ bi ◦ ci) , (23)

where λi ∈ R, i = 1, . . . , J , are normalization parameters and ai ∈ RN , bi ∈ RS , ci ∈ RT are the
vector components. In such a decomposition, ai, bi, and ci are treated as the columns of the factor
matrices A = [a1,a2, . . . ,aJ ], B = [b1,b2, . . . ,bJ ] and C = [c1, c2, . . . , cJ ], whose outer product
yields the original tensor T . The number of terms, J , can be defined as the rank of the tensor and
plays a pivotal role to tensor algebra.

To define formally the rank of a tensor we rely on simple, rank-1, tensors as the building blocks.
In particular, a rank-1 (a.k.a. simple or decomposable) tensor is a Kth-order tensor X (K ∈ Z+),
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which can be written as the outer product of K vectors, that is,

X = a(1) ◦ a(2) ◦ · · · ◦ a(K) . (24)

Then, the rank of a tensor T is defined as the smallest number of rank-1 tensors whose summation
generates T . It can be shown that, under mild conditions, the above tensor decomposition is unique
for third- and higher-order tensors.

Reordering the elements of a tensor into a matrix simplifies subsequent matrix-based processing.
Such a transformation, also called matricization or unfolding, is not unique, since different ways
exist for stacking the horizontal, lateral and frontal slices of a tensor in either column-wise or
row-wise arrays, as shown in Fig. 23.

Figure 23: Matricization or unfolding of a higher-order tensor into a matrix or vector form.

A commonly used way for recovering missing entries in high-order tensors is first to reduce them
to low-rank matrices via appropriate unfolding and then apply matrix completion techniques (ref.
Section 4.1). As mentioned before, the process of unfolding is not unique and different unfoldings
may result in significantly different ratios of high-magnitude over low-magnitude singular values.
Οne should consider the matrix with the largest possible dimension, since such a matrix is typically
characterized by limited degrees of freedom compared to its dimension.

Tensor completion (TC) techniques seek to estimate a low-rank tensor X , which agrees with
the observed data T , as follows,

min
X
∥X∥∗ s.t. PΩ(X ) = PΩ(T ) , (25)

where P and Ω denote a projection operator and the set of indices associated with the available
measurements, respectively, as in the case of MC. However, the tensor-based optimization problem
is much harder to be solved, since the tensor nuclear norm is not defined as the tightest convex
relaxation of the tensor rank, as it was the case with matrices. Instead, the tensor nuclear norm is
defined as the convex combination of the nuclear norms of all matrices unfolded along each of its
modes, as follows,

∥X∥∗ =

n∑
i=1

αi∥Xi∥∗ , (26)

where αi ≥ 0, with
∑n

i=1 αi = 1, and Xi are the matrices in the unfolded representation of the
tensor X . By combining (25) and (26) the TC problem is reformulated as follows,

min
X

n∑
i=1

αi∥Xi∥∗ s.t. PΩ(X ) = PΩ(T ) . (27)

A main drawback of the majority of methods used to solve (27) is that they do not exploit the
low rank properties of all the dimensions of a tensor, but instead they utilize a single dimension. To
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address this issue, the method of parallel matrix factorization (PMF) [116] has been introduced as
an efficient alternative for solving the TC problem. PMF is characterized by a reduced computa-
tional complexity and improved performance, when compared against the solutions based on tensor
unfolding. Focusing on the 3D case, we are interested in fully recovering a tensor T ∈ RN×S×T

from M ≪ N · S · T measurements. Specifically, T is unfolded across all of its modes to a set
of matrix factors Xn, Yn, such that Tn ≈ XnYn, where n = 1, 2, 3 indicates the corresponding
mode. Introducing a common variable Z to relate these matrix factorizations, we solve the following
problem to recover T ,

min
X,Y,Z

3∑
i=1

αi∥XiYi − Zn∥2F s.t. PΩ(Z) = PΩ(T ) , (28)

where X = (X1,X2,X3), Y = (Y1,Y2,Y3), and Zi, i = 1, 2, 3, corresponds to the unfolding of the
three-way tensor. The parameters αi are introduced in order to properly weight the contribution
of each unfolding. A limitation of this method is that the tensor rank must be known in advance,
which may not be the case in practice. In order to alleviate this issue, a rank-increasing scheme
is applied, which starts from a tensor estimate of very low rank and increasing the rank gradually
until the relative change of the singular values falls below a predefined threshold.

4.3 Reduction of Telemetry Cost Using Compressive Sensing
Let x = [x1, x2, . . . , xN ]

T ∈ RN denote an observed discrete-time signal with real-valued elements.
In the following, we assume that x can be either s-sparse (s≪ N) by itself, that is, |{j | xj ̸= 0}| ≤ s,
or sparse in some transform basis (a.k.a. dictionary) Ψ, such that α = Ψx, where α ∈ RN ′ is
the s-sparse vector of transform coefficients. Notice that, in general, N ′ ≥ N , since Ψ can be
overcomplete [117]. In the subsequent analysis, Ψ and ΨT denote the analysis (direct) and synthesis
(inverse) transforms, respectively.

In practice, the acquired signal is typically corrupted by observation noise, which is defined as
a perturbation introduced to the true signal prior to its sampling. In the following, we adopt an
additive model for the observation noise, that is,

x = x0 + eo , (29)

where x0 ∈ RN is the true noiseless signal and eo ∈ RN is the observation noise component.
Let A : RN 7−→ RM with M < N denote a sampling operator that maps a vector of N elements

to a lower-dimensional vector of M measurements. The compressive sampling of x is expressed by
y = A(x), where y ∈ RM is the vector of measurements.

In conventional compressive sensing (CS) systems the sampling operator A(·) is a linear map.
Considering the general case when the true signal is sparse in a transform basis Ψ, x0 = ΨTα0,
the vector of measurements is constructed by taking linear projections onto the rows of a random
matrix,

y = Φ
(
ΨTα0 + eo

)
= ΦΨTα0 + n , (30)

where Φ ∈ RM×N is a random measurement matrix and n = Φeo ∈ RM is the projected noise. Φ
must satisfy specific conditions (e.g. the null space property and the restricted isometry property
for ℓ1-norm minimization, and incoherence6 with ΨT ) to guarantee the successful reconstruction of
a sparse signal. The definition of the restricted isometry property (RIP) and the restricted isometry
constant (RIC) is as follows (ref. [120] for more details):

6Although incoherence among Φ and ΨT is a requirement for guaranteeing accurate sparse reconstruction [118],
recent works have proven that for truly redundant dictionaries a no-incoherence restriction on the dictionary can still
guarantee accurate sparse recovery [119].
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Definition (s-RIC): The s-restricted isometry constant of Φ is defined as the smallest positive
quantity δs, such that

(1− δs)∥v∥22 ≤ ∥Φv∥22 ≤ (1 + δs)∥v∥22 (31)

holds ∀v ∈ Ts, where Ts = {v ∈ RN | ∥v∥0 ≤ s}. A matrix Φ is said to satisfy a RIP of order s if
δs ∈ (0, 1).

By setting A = ΦΨT as the generic linear sampling operator, the true sparse coefficients vector
α0 can be recovered by solving, among other formulations, an ℓ1 − ℓ2 constrained optimization
problem of the form,

min
α∈RN′

∥α∥1 s.t. ∥y −Aα∥2 ≤ ε , (32)

where ε > 0 is a threshold depending on the noise level. Then, an estimate of the true signal
is given by x̂0 = ΨTα∗

0. Several efficient optimization formulations have been proposed in the
literature; for convenience and without loss of generality we consider the basis pursuit denoising
(BPD) formulation in (32), which is solved effectively using, for instance, the orthogonal matching
pursuit (OMP) algorithm [121].

Fig. 24 shows a schematic representation of the way CS will be applied in SmartWater2020’s
data processing module for reducing telemetry costs. Specifically, each sensor in the SWN acquires
a vector of N data samples xi ∈ RN , i = 1, . . . , C, where C is the number of sensors. Then, two
options exist for the generation of M random measurements, yi ∈ RM , with M ≪ N : 1) a distinct
Φi ∈ RM×N is drawn for each sensor i, that is, yi = Φixi, i = 1, . . . , C; 2) all the sensors employ
the same Φ, that is, yi = Φxi, which is also available to the base station, where the reconstruction
will take place. Then, the measurement vectors of highly reduced size, yi, are transmitted to a base
station, where an optimization problem is solved to reconstruct the original vectors xi. Notice that
the option 1) above does not induce any additional computational burden, since the extra amount
of information each sensor has to send to the base station is only a seed (i.e., scalar) for the perfect
regeneration of the corresponding Φi using a random number generator.

Figure 24: CS applied in SmartWater2020’s data processing module for reducing telemetry costs
(all sensors use the same measurement matrix Φ).

4.4 Industrial Applications
The theoretical frameworks and algorithmic tools presented in the previous sections have been
applied successfully in various distinct industrial applications, thus further motivating their use in
the data management and analysis module envisioned by SmartWater2020. In the following, we
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briefly review recent use cases that benefited from the above mentioned tools for data compression
and recovery.

1. Low-rank Matrix Completion for Sensor Data in Water Desalination Plants: The
framework of low-rank matrix completion was applied on data collected by a wireless sensor
network installed in a water desalination plant [122]. This work examined the effect of matrix
dimension, the number of sensors, and the impact of temporal super-resolution on recon-
struction accuracy. It has been noticed that the reconstruction quality is governed by the
percentage of information of the underlying data matrix and not by its size. Furthermore, the
MC applied on a combination of individual measurements achieves improved accuracy when
compared with a reconstruction of the values of each sensor individually, since it can fully uti-
lize the potential correlations among the sensors. Finally, the reconstruction of missing data
from a super-resolution perspective was examined, demonstrating that as the dimensionality
of the data matrix increases and the fill ratio decreases, the MC-based reconstructed data
preserve their smoothness and distribution to a great extent, compared with the initial full
data matrix.

2. Compressive Sensing and Tensor Completion in Cyber-Physical System: In [123],
CS and TC were applied on data acquired by the nodes of a cyber-physical system (CPS).
Among other problems, this work investigated the effect of noise removal prior to the recovery
of measurements which were either lost or intentionally not transmitted due to energy con-
straints. By examining a low-order matrix for detecting and removing rare errors via robust
PCA, it was shown that the proposed method achieved accurate separation of the clean low-
rank signal even in the presence of significant noise. Finally, the reconstruction performance
from a subset of measurements was evaluated, when the measurements are stored in a tensor-
like structure. A key remark was that a very realistic estimation of the original information
can be performed even when half of the measurements are missing. Furthermore, the most
significant features are preserved, even when a quarter of the measurements are available.
Although increasing the sampling rate yields a more accurate reconstruction in both tensor
and matrix modeling scenarios, the superiority of the tensor-based approach was highlighted,
which achieved a nearly monotonically decrease of the reconstruction error, in contrast to the
matrix-based cases, where the reconstruction error reached a plateau for several unfolding
schemes.

3. Compressive Sensing-based Scheduling in Wireless Sensor Networks: In [124], a
compressive sensing-based scheduling scheme was proposed that conserves energy by activat-
ing only a small subset of sensor nodes in each time slot to sense and transmit. Transmitting
the minimum amount of data, while putting the rest of the sensor nodes in sleep mode, the
energy efficiency can be improved significantly. Τhe proposed algorithm was shown to out-
perform state-of-the-art approaches, in terms of energy consumption, network lifetime, and
robustness to sensor node failures.

4. Matrix/Tensor Completion for Industrial and Outdoor Environments Data: In [125],
the problem of recovering missing observations from environmental sensing platforms via MC
and TC was examined. From the one hand, MC was employed to exploit inherent correlations
within the data, in order to recover low-rank matrices from a substantially limited number
of measurements. On the other hand, the use of TC was motivated by the fact that two-way
matrices are unable to preserve the higher structural complexity needed for simultaneously
encoding data from a variety of sources. An experimental evaluation was performed on two
datasets of different sizes, demonstrating that TC achieves a reduced reconstruction error as
the fill ratio increases, in contrast to the MC approach, where an increase in the fill ratio
above 0.2 did not improve considerably the reconstruction performance.
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5 Event Diagnosis
5.1 Extreme Event Detection
In an industrial setting, the distributed autonomous sensing envisioned by SmartWater2020 will be
further exploited to produce intelligent reasoning over the acquired data by supporting advanced
operations, such as querying, high-level analysis, and alerting. In particular, a high-level data man-
agement and analysis (HDMA) module is an integral part towards an efficient decision making.
Typically, an HDMA component comprises of collaborating computational nodes, which observe
and control distinct physical entities and dynamic phenomena. Rather than relying on single sen-
sor stream statistics, such as average and standard deviation, which is the customary approach in
most data analysis systems, an efficient HDMA module focuses on finding and extracting inherent
information for detecting behavioral variations in the acquired data. This is crucial, especially in a
SWN framework, since the accurate and timely detection of abnormal changes in sensor measure-
ments will enable early actuation aiming at minimizing operational and maintenance costs, as well
as reducing the environmental effects due to the loss of valuable water.

Usually, the sensor nodes do not handle any quality aspect of physical device data, but rather
interface with a high-level representation of the sensed physical world. In practice, the recorded
sensor data are often incomplete, imprecise, or even misleading, thus impeding the task of an
accurate and reliable decision making. Motivated by this, a powerful HDMA system should also cope
with what we call uncertain data. Uncertainty-aware data management [126] presents numerous
challenges in terms of collecting, modeling, representing, querying, indexing and mining the sensor
data. Since many of these issues are interrelated, we address them jointly wherever possible. In
contrast to most of the existing industrial SWN platforms, a versatile HDMA module considers
uncertainty as an additional source of information that could be valuable during data analysis and
thus it should be preserved.

Another major functionality assigned to a modern data analysis system is to perform high-level
operations, such as the notification of extreme events from raw sensor data. Since the detection of
abnormal behavior is affected by the underlying uncertainty, incorporation of its estimated value
is expected to yield more meaningful results. More specifically, widely used methods for extreme
events detection can be enhanced by incorporating the inherent data uncertainty, yielding an in-
tegrated uncertainty-aware HDMA (U-HDMA) system capable of identifying, quantifying, and
combining the individual uncertainties corresponding to the most significant sources of uncertainty
for providing early warning notifications of extreme events.

On the other hand, extracting highly correlated pairs of data streams acquired by distinct sen-
sors is another important issue. Doing so, we aim at revealing interrelations between seemingly
independent physical quantities, or guaranteeing the validity of a detected extreme event. Whereas
traditional statistical machine learning provides well-established mathematical tools for monitoring
and analyzing multiple data streams by exploiting potential pairwise correlations [127, 128], their
performance is limited when processing heterogeneous and uncertain data streams. More specif-
ically, [129] studies the problem of maintaining data stream statistics over sliding windows, with
the focus being only on single stream statistics, while [130] introduced an extension for monitoring
the statistics of multiple data streams, but the computation of correlated aggregates is limited to a
small number of monitored sensor streams. On the other hand, [131] introduced a successful data
stream monitoring system, which enables the computation of single- and multiple-stream statistics.
However, its performance diminishes in an industrial environment, since the sensor streams we
manage describe dynamic phenomena, whose distribution is not known a priori. Such limitations of
previous approaches can be overcome by designing an appropriate stream correlation engine based
on a computationally efficient similarity function, which enables fast and accurate monitoring of
pairwise correlations between time-synchronized, possibly big, sensor data streams.
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Fig. 25 summarizes the main functionalities to be supported by our proposed U-HDMA module,
namely, (i) uncertainty estimation, (ii) correlations extraction, and (iii) detection of extreme events.

Figure 25: Building blocks of our uncertainty-aware high-level data analysis system.

5.1.1 Managing Uncertainty

In practice, the raw sensor data acquired by distinct sensors distributed across a SWN are often
unreliable, imprecise, or even misleading. This yields results of unknown quality, which may impede
the task of an accurate and reliable decision making. To this end, the notion of measurement
uncertainty arises as an indicator of measurement quality. Speaking formally, the uncertainty is a
parameter associated with the result of a measurement, which characterizes the dispersion of the
values that could reasonably be attributed to the measurand, where a measurand refers to a quantity
to be measured.

The underlying uncertainty may arise due to several distinct sources, such as, an incomplete
definition of the observed quantities, sampling effects and interferences, varying environmental
conditions, or hardware defections of the equipment. The effects of all these factors can be observed
and quantified from the recorded sensor data only. For this purpose, a set of ordered steps need
to be performed in order to obtain an estimate of the uncertainty associated with a measurement
result. Fig. 26 presents the processing flow, which starts by identifying the measurands to be
monitored and returns the overall estimated uncertainty.

Having specified appropriate measurands associated with our SWN application, such as tem-
perature (◦C) and pressure (bar), the next step is to identify the potential, most dominant, sources
of uncertainty. To this end, the so-called cause and effect (or Ishikawa) diagram is exploited [132],
which ensures comprehensive coverage, while helping to group similar sources and avoid double
counting. Fig. 27 shows a typical cause and effect diagram for a temperature sensor. Its perfor-
mance may be affected by several distinct factors, such as, its sensitivity and precision, calibration,
and operating temperature. Furthermore, the accuracy of the acquired measurements depends also
on the deployment density and location of the sensors, as well as on the sampling process. Possible
misplacement or a very sparse time-sampling is expected to increase the uncertainty, especially
when the monitored variables vary rapidly across time.

Towards assessing the underlying uncertainty component in a given raw sensor data stream
we recall its distinction into two separate categories, namely, type A (aleatoric, statistical, or ir-
reducible) and type B (epistemic, systematic, or reducible) uncertainty [133]. For instance, the
physico-chemical properties of substances concentration, the operating conditions of the sensors and
their manufacturing tolerances are typical examples associated with type A uncertainties, which
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Figure 26: Flow diagram for uncertainty estimation in sensor data streams.

Figure 27: Cause and effect diagram for a temperature sensor.
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cannot be reduced. On the other hand, the mathematical models, the calibration methods, and
the inference techniques from experimental observations are typical sources of type B uncertainties,
which can be reduced by improving the accuracy of our physical models or calibration methods.

Without going through much detail, in the following we introduce the main approaches for
carrying out the steps 3 and 4 in Fig. 26. Specifically, uncertainties of type A are characterized
by the estimated variances σ2

i , which are obtained by statistical analysis of the measurements in
the raw sensor streams. This is equivalent to obtaining a standard uncertainty from a probability
density function derived from an observed frequency (empirical) distribution. Let y = [y1, . . . , yN ]
be a vector of N sensor measurements, which correspond to a specific observed variable. Then, the
standard uncertainty of y, which is denoted by u(y), is expressed in terms of the corresponding
standard deviation σy, estimated directly from the observations yi, as follows,

u(y) =
σy√
N

. (33)

For uncertainties of type B, the estimated “variance” s2j is obtained from an assumed probability
density function based on our prior knowledge for the corresponding source of uncertainty, which
may include: a) data from previous measurements; b) experience or knowledge of the properties
of instrumentation and materials used; c) manufacturer’s specifications; and d) calibration data.
In general, concerning type B uncertainties, the quantification is performed either by means of an
external information source, or from an assumed distribution.

Typical assumptions for the prior distributions include the Gaussian (e.g. when an estimate
is made from repeated observations of a randomly varying process, or when the uncertainty is
given as a standard deviation or a confidence interval), the uniform (e.g. when a manufacturer’s
specification, or some other certificate, give limits without specifying a confidence level and without
any further knowledge of the distribution’s shape), and the triangular distribution (e.g. when the
measured values are more likely to be close to a value α than near the bounds of an interval with
mean equal to α) [134]. For instance, if a manufacturer’s specification, or some other certificate, give
limits in the form of a maximum range, y ± α, without any further knowledge of the distribution’s
shape, then the estimated standard uncertainty is equal to u(y) = α√

3
, while if the maximum range

is described by a symmetric distribution then u(y) = α√
6
.

Having expressed the individual uncertainties as standard uncertainties, the next step is to
calculate the combined standard uncertainty. Although in practice there may exist correlations
between the individual uncertainty sources, however, it is usually impossible to compute those
correlations accurately. For this purpose, it is more convenient to rely on an assumption of inde-
pendence between the individual uncertainty sources. In the following, let y = f (x1, . . . , xL) be an
observed variable, which depends on L input variables xl through a functional relation f(·). Then,
the combined standard uncertainty of y, for independent input variables xl, l = 1, . . . , L, is given
by

uc(y) =

√√√√ L∑
l=1

(
∂f

∂xl

)2

u2(xl) , (34)

where u(xl) denotes the standard uncertainty of the input variable xl (either of type A, or of type
B), while the partial derivatives ∂f

∂xl
, the so-called sensitivity coefficients, quantify how much the

output y varies with changes in the values of the input variables xl. It is also important to note
that, before the evaluation of uc(y), we have to ensure that all the distinct standard uncertainties
are expressed in the same units.

Finally, the combined standard uncertainty, which may be thought of as equivalent to one
standard deviation, is transformed into an overall expanded uncertainty, U , which is the final output,
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Table 5: Coverage factor as a function of confidence level for the Gaussian distribution
Coverage factor (k) Confidence level (%)
k = 1 67%
k = 1.96 95%
k = 2.576 99%
k = 2.3 99.7%

via multiplication with a coverage factor k, that is,

U(y) = k · uc(y) , (35)

where the value of k is determined by the desired confidence level of a Gaussian distribution, as
shown in Table 5.

5.1.2 Uncertainty-aware Early Warning

Another major functionality assigned to a modern data analysis system is to perform high-level
operations, such as the notification of extreme events from raw sensor data. Since the detection of
abnormal behavior is affected by the underlying uncertainty, incorporation of its estimated value
is expected to yield more meaningful results. More specifically, widely used methods for extreme
events detection can be enhanced by incorporating the inherent data uncertainty, yielding an in-
tegrated uncertainty-aware HDMA (U-HDMA) system capable of identifying, quantifying, and
combining the individual uncertainties corresponding to the most significant sources of uncertainty
for providing early warning notifications of extreme events.

Extreme events can occur at any phase and time instant of the SWN infrastructure’s operation,
which necessitates its continuous and efficient monitoring to achieve early detection of abnormal
behavior. Although a typical SWN setting is generally intended to operate autonomously, however,
in extreme events it is of high significance to anticipate the impact of the detected events by
triggering appropriate actuators in time. To this end, designing fast and accurate extreme event
detectors for providing early warning notifications is a strong demand in order to guarantee the
smooth operation of our SWN.

Among the several approaches, which have been introduced in the literature, extreme value
theory (EVT) provides efficient algorithmic tools to assess the probability of events that are more
extreme than any previously observed. Two approaches are the most widely used in practice for
extreme value analysis, namely, the method of block maxima (BMax) [135] and the method of
peaks-over-threshold (POT) [136, 137]. Depending on the application, each method has its own
advantages and limitations. For instance, BMax is easier to apply and theoretical assumptions are
less critical in practice. However, estimation errors can be large for relatively small block sizes.
On the other hand, POT yields more independent exceedances than BMax, along with tighter
confidence intervals. Its main drawback is that an independence assumption is critical, which may
not hold in practice, and also the choice of an appropriate threshold is somewhat ambiguous in
practice resulting in a less easier implementation. Furthermore, in both cases, the detection of
extreme events is based on the raw data without accounting for their underlying uncertainty. In
addition, given our major requirement for providing timely notifications of abnormal behavior, the
selected extreme events detection method must have a small computational complexity, without
sacrificing the detection accuracy. The simplest approach to satisfy both requirements, that is, to
exploit the inherent data uncertainty while being computationally efficient, is obtained by modifying
an alternative widely used method, the so-called compliance with operating limits (COL).
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Figure 28: Compliance of uncertainty-augmented measurements with a predetermined upper oper-
ating limit.

Without loss of generality, in the following, we focus on the case of an upper operating limit,
however, the same remarks are straightforward when compliance with a lower operating limit is
required. More specifically, let lu denote an upper operating limit dictated by a manufacturer or a
specification standard. In addition, let ỹ = y ± U be a measurement augmented by its associated
expanded uncertainty interval. In contrast to the typical COL method, for which only two cases
exist when checking for compliance between the raw measurement y and the upper limit lu, as shown
in Fig. 28 there are two additional cases for its uncertainty-aware counterpart, hereafter denoted as
U-COL. Specifically, the four possible cases of U-COL are as follows: (i) both the measurement and
the expanded uncertainty interval are above the upper limit lu; (ii) the measurement is larger than
lu and the expanded uncertainty interval contains lu; (iii) the measurement is lower than lu and
the expanded uncertainty interval contains lu; and (iv) both the measurement and the expanded
uncertainty interval are below lu. Among them, only case (i) triggers clearly an alerting notification
for the occurrence of an extreme event, while (iv) is the only one which is in compliance with the
specifications. On the other hand, in cases (ii) and (iii) we cannot infer with absolute certainty
whether an alert should appear or not. Nevertheless, in applications with profound social impacts,
as is the case of reducing losses in a water supply network, a system operator should classify cases
(ii) and (iii) as possible divergences from normal operation, and thus draw more attention on the
associated monitored variables.

5.1.3 Fast Extraction of Data Stream Correlations

Fast and accurate identification of highly correlated pairs of data streams acquired by distinct
sensors is another key functionality of a robust HDMA module. Doing so, we aim at revealing
interrelations between seemingly independent physical quantities, or guaranteeing the validity of
a detected extreme event. Nevertheless, the degree of “high correlation” is related to the specific
application and the end-user, who has the flexibility to define how much strict this degree will be.

Extraction of pairwise correlations yields a partition of the set of available sensors into subsets
of highly correlated sensors. This clustering facilitates the monitoring of the overall infrastructure
by a system operator, who focuses only on a subset of sensors, where an abnormal behavior has
been detected for at least one of its members. In the following, let x ∈ RN , y ∈ RN be two sensor
streams of length N , and xw = [xt1 , . . . , xtw ], yw = [yt1 , . . . , ytw ] be two time-synchronized windows
of size w. The typical approach for extracting pairwise sensor stream correlations is by means of
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the Pearson’s correlation coefficient, which is defined by

corr(xw,yw) =

∑w
i=1 xtiyti − wx̄wȳw
(w − 1)σxw

σyw

, (36)

where x̄w, ȳw are the means of xw and yw, respectively, and σxw
, σyw

denote their corresponding
standard deviations.

From a computational perspective, the main limitation is that the correlation coefficient has to
be recalculated for each newly acquired measurement, which increases the computational burden,
especially for big data streams or for a large number of sensors. To this end, a computationally
efficient solution was proposed based on the use of the discrete Fourier transform (DFT). Working
in a DFT framework, each sample xti (similarly yti) can be expressed as a linear combination of
exponential functions

xtk ≈
1√
w

K−1∑
f=0

Xfe
i2πfk

w , k = 1, . . . , w , (37)

where Xf , f = 0, . . . ,K − 1, is the set of K DFT coefficients, with K < w. Doing so, the
computation of the correlation coefficient in (36) is performed in terms of DFT coefficients. In
our U-HDMA system we are interested in identifying and tracking highly correlated sensor pairs
in an online fashion by also incorporating the estimated data uncertainty. Aiming at improving
the computational performance of the DFT-based approach, while maintaining its accuracy, in our
U-HDMA system the problem of extracting highly correlated pairs of sensors is translated into a
problem of identifying highly similar sensors, where the similarity is measured by an appropriately
designed function.

Let x be the reference sensor stream and {y1, . . . ,yC} the set of candidate streams. At the
core of our fast and robust correlation extractor is an efficient peak similarity function. Given two
windowed, yet time-synchronized, data streams xw, yi,w, i = 1, . . . , C, the corresponding expanded
uncertainties Uxw

, Uyi,w
are estimated first. Then, the uncertainty-augmented windows are formed:

xU
w = xw + Uxw

(or xU
w = xw − Uxw

), yU
i,w = yi,w + Uyi,w

(or yU
i,w = yi,w − Uyi,w

). After their
normalization to mean zero and variance one, x̂U

w and ŷU
i,w, respectively, the M -sized (M ≪ w

2 )
truncated DFTs are computed, X̂U

w = F{x̂U
w}, ŶU

i,w = F{ŷU
i,w}. Finally, our uncertainty-aware

peak similarity function is defined as

psim,U (xw,yi,w) =
1

M

M∑
j=1

1−
∣∣∣X̂U

w;j − ŶU
i,w;j

∣∣∣
2 ·max

(
|X̂U

w;j |, |ŶU
i,w;j |

)
 , (38)

where X̂U
w;j denotes the jth element of X̂U

w (similarly for ŶU
i,w). Our U-HDMA system reports

as highly similar those sensor pairs for which psim,U (xw,yc,w) > ϵU . In order to account for the
potential loss of information caused by the truncation of the set of DFT coefficients, as well as for
the incorporation of the underlying uncertainties, special attention should be given on the selection
of the threshold ϵU . However, an automatic and adaptive rule to select an optimal threshold ϵU is
still an open question.

To illustrate the computational efficiency of psim,U , its performance is compared against the
typical correlation coefficient and two state-of-the-art methods, namely, BRAID [138] and Stat-
Stream [131]. BRAID can handle data streams of semi-finite length, incrementally, quickly, and
can estimate lag correlations with little error. On the other hand, StatStream resembles more the
design principles of psim,U by finding high correlations among sensor pairs based on DFTs and a
three-level time interval hierarchy. Fig. 29 compares the execution times of psim,U with the above
three alternatives, as a function of the window size. The results reveal a significant improvement
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Figure 29: Comparison of execution times, as a function of the window size, between a) uncertainty-
aware peak similarity (psim,U ), b) StatStream, c) BRAID, and d) correlation coefficient (corr).

in execution time achieved by psim,U , which is more prominent for higher window lengths. Most
importantly, we observe that the execution time of psim,U remains almost constant over the whole
range of selected lengths, in contrast to the naive (corr) and BRAID methods, whose execution
times increase rapidly for increasing window length.

The BRAID algorithm, for which we set the correlation lag to zero, is characterized by gradual
increase for increasing window size, since it employs all the values in the observed time interval. On
the other hand, StatStream is based on a simple hash function of the mean of each sensor window.
Keeping the integer part of the means, the data windows are mapped to appropriate cells in a grid
structure. Doing so, only the correlations between neighboring cells are computed. The increased
execution time of StatStream, compared to psim,U , is due to the hash function, which involves more
computations for the mapping. It is expected though that the performance of StatStream could be
enhanced by designing a more efficient hash function.

5.2 Leakage Event Detection
Water leaks in water distribution networks (WDN) can cause significant economic losses in fluid
transportation and an increase on reparation costs that finally generate an extra cost for the final
consumer. In many WDN, losses due to leaks are estimated to account up to 30% of the total
amount of extracted water. Such burden is a very important issue in a world struggling to satisfy
water demands of a growing population.

A selective literature review of transient-based leak detection methods was presented in [139].
These methods exploit the fact that any change in the physical (or propagation) structure of the
pipe or system, such as a junction, constriction, expansion, blockage, roughness transition or leak
imposes a wave reflection to an incoming transient signal, thus altering in some way a system¢s flow
and pressure response. The localization of a leak is typically done via comparison of the pressure
signal registered by monitoring devices relative to the signal that would be observed if the system
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did not contain the leak or singularity. The second way in which a leak can be identified is through
its role in pressure relief. As a high pressure wave passes, the leak causes some attenuation in the
primary transient signal by permitting escape of some pressurized fluid.

Another review of leakage management related methods was presented by [19] and classify them
as follows: (1) leakage assessment methods which are focusing on quantifying the amount of water
lost; (2) leakage detection methods which are primarily concerned with the detection of leakage
hotspots and (3) leakage control models which are focused on the effective control of current and
future leakage levels. The review ends with the main conclusion that despite all the advancements
made in the past, there is still a lot of scope and need for further work, especially in area of real-time
models.

A leak magnitude estimation method is presented in [140] using continuous measurements of
flow rates through the main supply line into a residential service zone are available during periods
of low use. The sample mean and variance from the set of measured flow rates are computed as the
set is truncated progressively from below. Trajectories of the sample statistics and their derivatives
are plotted versus the level of data truncation. In the presence of leaks, these trajectories diverge
from their expected theoretical path.

A methodology in [141] for evaluation of water losses is presented based on discrimination
of physical losses in mains and service connections, and the volume of water consumed but not
measured by meters. The water balance calculations consider that all non-measured consumption
is an apparent loss. The methodology presumes that real losses in certain physical states of a
network are a function of pressure, while apparent losses are a function of consumption patterns
(i.e., domestic, industrial, institutional, etc.).

Covas et al., (2005) [142] investigate leakage detection and localization in pipe systems by
means of the standing wave difference method (SWDM) used for cable fault location in electrical
engineering. This method is based on the generation of a steady-oscillatory flow in a pipe system,
by the sinusoidal maneuver of a valve, and the analysis of the frequency response of the system for
a certain range of oscillatory frequencies (active fault detection?). A leak creates a resonance effect
in the pressure signal with a secondary superimposed standing wave. The pressure measurement
and the spectral analysis of the maximum pressure amplitude at the excitation site enable the
identification of the leak frequencies and, consequently, the estimation of the leak approximate
location.

The leak detection problem is formulated and solved in [143], as an inverse problem with un-
known leak areas being the calibration parameters. A stochastic leakage detection methodology
is developed and used. This methodology is based on the Shuffled Complex Evolution Metropolis
(SCEM-UA) algorithm and is capable of estimating the posterior probability density functions of
unknown leak areas in a single model run.

A model-based approach for sensor fault detection is used in [144] and a diagnosis strategy based
on fuzzy residual analysis. Analytical redundancy is used to detect and isolate faults on sensors;
specifically, parity functions are used to generate residuals; a parity function is an algebraic or
a differential relationship based on a model process and observed measurements such that the
measurement noise can be neglected. In the absence of fault, the residual is zero and when a fault
occurs the residual takes a nonzero value. A theoretical matrix of fault signature is defined by
coding with binary variables the occurrence of variables in the different residuals. This method
relies upon the residuals fuzzification.

Morais et al. (2007) [145], propose a group decision-making model based on PROMETHEE V
method to aim a leakage management strategy, which takes into account the points of view of four
stakeholders, selecting feasible options, and considering the available budget as constraint. Thus,
this strategy is the combination of options that will efficiently meet technical, socio-economic and
environmental criteria to achieve sustainable development.

A steady-state network simulation model is presented in [146] using classical hydraulic repre-
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sentation, pressure-driven demand and leakage at the pipe level, with aim to demonstrate a more
realistic leakage analysis.

A complex hybrid model is presented in [147] based on a synergetic combination of deterministic
and machine learning model components. State estimation is performed using a technique borrowed
from machine learning, specifically a neuro-fuzzy approach. The quantification of the uncertainty
of the input data (telemetry measures and demand predictions) can be achieved by means of robust
state estimation. By making use of the mathematical model of the network, estimated states
together with uncertainty levels, that is to say, fuzzy estimated states, for different anomalous
states of the network can be obtained. These two steps rely on a theory-driven model. The final
aim is to train a neural network (using the fuzzy estimated states together with a description of
the associated anomaly) capable of assessing WSS anomalies associated with particular sets of
measurements received by telemetry and demand predictions. This is the data-driven counterpart
of the hybrid model.

Perez et al. (2011) [148] propose a leakage localization method based on the pressure mea-
surements and pressure sensitivity analysis of nodes in a network. The same methodology is also
described in [149]. Simulations of the network in the presence and the absence of leakage may
provide an approximation of this sensitivity. A binary matrix is assumed as a signature matrix
for leakages. A trade-off is identified between the resolution of the leakage isolation procedure and
the number of available pressure sensors. To maximize the isolability with a reasonable number
of sensors, an optimal sensor placement methodology, based on genetic algorithms. The sensor
placement methodology was later described in [150].

Another methodology described in [151] and [152] performs leak detection, isolation and esti-
mation computing residuals which are obtained comparing measured pressures (heads) in selected
points of the network with their estimated values by means of a Linear Parameter Varying (LPV)
model and zonotopes. The structure of the LPV model is obtained from the non-linear mathemati-
cal model of the network. The proposed detection method takes into account modelling uncertainty
using zonotopes. The isolation and estimation task employs an algorithm based on the residual
fault sensitivity analysis.

Gertler et al. (2010) [153] use pressure measurements and the application of principal component
analysis to the fault diagnosis.

This team published a more detailed explanation of the model-based methodology for leak
localization using pressure sensors and an application to a real network (Barcelona) in [154].

Islam et al. (2014) [155] propose an integrated framework for different kinds of faults in a
network including water quality failures. The leakage detection and localization module uses many
kind of data, such as traffic, temperature, soil type, pipe parameters as well as estimated hydraulic
conditions to assess the possibility of a leakage at each pipe of the network.

A burst detection methodology is presented in [156] that utilizes sensor data in a district metered
area using a data assimilation method (Kalman Filtering) and a hydraulic model. A sensitivity
analysis was applied to evaluate the performance of various burst detection metrics under different
conditions, and to identify appropriate thresholds for online burst detection using artificial generated
burst events.

Romano et al. (2014) [157] present a methodology for the automated near-real-time detection
of pipe bursts and other events that induce similar abnormal pressure/flow variations (e.g., unau-
thorized consumptions) at the district metered area (DMA) level. The new methodology makes
synergistic use of several self-learning artificial intelligence (AI) techniques and statistical data anal-
ysis tools, including wavelets for denoising of the recorded pressure/flow signals, artificial neural
networks (ANNs) for the short-term forecasting of pressure/flow signal values, statistical process
control (SPC) techniques for short- and long-term analysis of the pipe burst/other event-induced
pressure/flow variations, and Bayesian inference systems (BISs) for inferring the probability of a
pipe burst/other event occurrence and raising corresponding detection alarms.
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A methodology to detect leakages in a District Metered Area (DMA) with standard flow sensors
to monitor the water inflow is proposed in [158] . The water inflow signal is normalized to remove
yearly seasonal effects, and a leakage fault detection algorithm is presented, which is based on
learning the unknown, time-varying, weekly periodic DMA inflow dynamics using an adaptive
approximation methodology for updating the coefficients of a Fourier series; for detection logic the
Cumulative Sum (CUSUM) algorithm is utilized.

An online fault detection approach for critical infrastructures based on a model-based fault
diagnosis architecture for nonlinear uncertain discrete-time systems, with bounded modelling un-
certainties is presented in [159] . A testbed has been developed (5 tank system), to emulate the
operation and common faults of a critical infrastructure (i.e., a water supply system), as well as its
interaction with a SCADA system.

A leak-detection and localization approach to be coupled with a calibration methodology that
identifies geographically distributed parameters is proposed in [160]. The approach proposed con-
sists in comparing the calibrated parameters with their historical values to assess if changes in
these parameters are caused by a system evolution or by the effect of leakage. The geographical
distribution allows unexpected behavior of the calibrated parameters (e.g., abrupt changes, trends,
etc.) to be associated with a specific zone in the network.

5.3 Quality Event Detection
A drinking water distribution network (DWDN) is an interconnected collection of pipes, water
sources and hydraulic control elements such as pumps, valves and tanks, that delivers to consumers
water at the demanded quantity and pressure. Drinking water delivered to consumers should
contain a small disinfectant residual in order to reduce the risk of human exposure to pathogens.
A number of water utilities use chlorine for disinfection because it is inexpensive and effectively
controls a number of disease-causing organisms. The regulation of chlorine concentration in drinking
water, also referred to as water quality, requires chlorine injection stations. For monitoring chlorine
concentration, chlorine sensors are used and regulation is performed either by a human operator, or
automatically using real time sensor measurements and feedback control algorithms. Water quality
monitoring and control is an important issue since customer complaints can occur if the disinfectant
applied to the water is not regulated properly, but most importantly, in the case of a contamination
event, thousands of people can be affected if not detected in time.

Water contamination warning systems (WCWSs) are typically deployed to monitor the quality
of water. At the same time, wireless sensor networks (WSNs) have found extensive applications in
monitoring physical or environmental conditions such as temperature, sound, pressure, etc. There-
fore in this context, WCWSs have been one of the most recent embodiments of WSNs. The idea
of a contamination warning system CWS has been highlighted by recent attention on making wa-
ter distribution networks more robust against intentional contamination events. Several authors
have demonstrated different detection algorithms in order to improve event detection in WDN.
The contamination event detection approaches based on water quality measurements consist of two
phases. The first phase is to set up the prediction model with the historical data as the training
dataset. The second one is to determine the water quality by comparing the predicted values with
the measurements. Various approaches have been proposed for addressing the problem of con-
tamination detection, using single or multiple-type measurements which are analyzed separately
or in combination, from one or more locations in the network, using model-based or model-free
approaches.

In the threshold-based approaches, the threshold values are set through statistical models. Sim-
plicity is the main advantage since raw data can be directly processed. The abnormal event detection
with two thresholds were adopted in [161]. However, the threshold-based approaches cannot obtain
the spatio-temporal feature of water quality data, which results in low accuracy and high false
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positives of event detection. In the pattern matching approaches, the pattern is established and
verified with water quality sensor readings to infer the contamination event [162]. Byer and Carlson
assumed that the water quality parameters obey a Gaussian distribution. One statistical model was
established to detect contamination events [163]. The statistical model detection methods cannot
be used in the applications.

Learning-based methods can make inference of the possibility of contamination events based on
the temporal and spatial correlation of water quality measurements [164, 165]. It was promising to
make full use of the spatial and temporal correlation to detect contamination events.

Markov random fields (MRFs), Bayesian network (BN), dynamical BN, and SVM are common
models in the WSNs with the high density. MRFs were adopted to model spatial context and
stochastic interaction among observable quantities [166]. BN is considered as a means for unsu-
pervised learning and anomaly detection in gas monitoring sensor networks for underground coal
mines [164]. Perelman proposed a BN-based contamination event detection method to determine
the event occurrence through estimating the possible locations of potential contaminants in WSNs
[167]. One improved water-contamination events detection based on D-S theory was proposed to
predict water quality parameters with on-line water quality sensors [168]. The contamination event
detection algorithm based on principal component analysis (PCA) has been presented [169]. The
PCA was applied to the normalized measurement. Then, the alarm index and the threshold of
the alarm were obtained. In addition, a spatio-temporal model was adopted to detection the con-
tamination events with water sensor networks [170]. A multiple type measurement approach at
a single location was proposed in [163], where each parameter was compared to its three bounds.
Control charts and Kalman filters have also been proposed in [171]. When multiple types of sensors
are available, these can be used to compute distance metrics to detect contamination [172]. The
probability of contamination events could be computed and compared to an adaptive threshold by
utilizing a sequential Bayesian rule [173]. The estimation error of event detection was computed
with respect to the measurements from a moving window [25]. Moreover, the S- placement toolkit
[174] was used for computing at which locations to install contaminant sensors in water distribution
systems to reduce the impact risks. Eliades and Polycarpou (2010) proposed a solution methodology
for the sensor-placement problem by considering several risk-objectives including the state-space
representation of the propagation and reaction dynamics,coupled with the impact dynamics de-
scribing the damage caused by a contamination under certain impact metrics. In addition, the
US Environmental Protection Agency provides the event detection tool-CANARY [175] for time
series analysis of multiple water quality parameters. Fluctuations in water distribution networks
may cause significant variability, a Bayesian belief network was presented to infer the probability
of contamination [176].

Based on the above analysis, most approaches for contamination event detection have been
discussed via using single type water quality parameters. There are multiple components to in-
dicate water quality in a WSN, such as free chlorine, EC, pH, temperature, TOC, and turbidity.
Unfortunately, a single parameter of water quality cannot reflect the real water quality in a WSN.
When a contamination event occurred, the observable values of multiple water quality parameters
changed in a significant way. The contamination event detection methods based on single parame-
ter may result in low detection accuracy and high false alarms. To improve the detection accuracy
and reduce the false alarms, multiple parameters of water quality should be considered to make a
decision with data fusion. Eliades et al. 2014, 2015 proposed a model-based method for contami-
nation event detection using real-time concentration lower-bound estimations as well as multi-level
thresholds, for enhancing detection and reducing detection delay while minimizing false positive
alarms [177, 99]. Monte-Carlo simulations use the nonlinear model to obtain uncertainty bounds
by randomly generating and evaluating a large number of parameter sets or realizations [177]. This
approach is computationally intensive and even with a large number of simulations some extreme
cases may not be covered. Koch and Mckenna, 2011 proposed an approach for combining data from
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multiple stations to reduce false background alarms [178]. By considering the location and time of
individual detections as points resulting from a random space-time point process, Kulldorff’s scan
test can find statistically significant clusters of detections. Karami et al. 2012 investigated the
application of hierarchical wireless sensor networks in water quality monitoring [179]. Adopting a
hierarchical structure, the set of sensors were divided into multiple clusters where the value of the
sensing parameter is almost constant in each cluster. The members of each cluster transmit their
sensing information to the local fusion center (LFC) of their corresponding cluster, where using
some fusion rule, the received information is combined, and then possibly sent to a higher-level
central fusion center (CFC). A two-phase processing scheme is also envisioned, in which the first
phase is dedicated to detection in the LFC, and the second phase is dedicated to estimation in both
the LFC and the CFC. They focused on the problem of decision fusion at the LFC: proposing hard-
and soft-decision maximum a posteriori (MAP) algorithms, which exhibit flexibility in minimizing
the total cost imposed by incorrect detections in the first phase. Liu et al. [28] proposed a method
for real-time contamination detection using multiple conventional water quality sensors. Eight sen-
sors were used in the case study. Furthermore, they extended their work by determining how the
number of sensors influences the detection performance and identifying the optimal combination of
sensor deployment. Mao et al. 2017 [180] proposed M-STED that utilizes a back propagation neu-
ral networks model to estimate the relationships between water quality parameters in a WSN. The
proposed M-STED can detect potential contamination events for temporary analysis of multivariate
water quality time series with Bayesian sequential analysis.

The water industry increasingly requires the estimation of WDN hydraulic state variables, such
as water flows and pressures, in order to operate water systems efficiently, provide better customer
service and assess the system behavior in order to detect and isolate water leaks or other emergency
events. State estimation is enabled by gathering sensor measurements of flows and pressures at
certain locations of the network through a Supervisory Control and Data Acquisition (SCADA)
computer system. Then, using a mathematical model of the network, the state at all locations is
estimated. However, this is a challenging task due to the complexity and large area covered by
water networks. Water outflow due to consumer demands is difficult to be measured accurately,
as this would require a smart water meter at every residence. Thus, sensor measurements are
scarce and the state estimation problem is under-determined. A common practice in WDN is to
skeletonize the network by treating a group of consumers as a single demand point. It is then
possible to use pseudo-measurements, which are demand estimates determined from population
densities and historical data, to obtain an observable system configuration for state estimation
[181]. Furthermore, modelling uncertainty is a cause of serious estimation errors. Pipe parameters,
such as pipe roughness coefficients, are rarely known accurately. Even with an observable sensor
configuration, model calibration is required a priori or during state estimation for the procedure to
produce feasible solutions [182, 183].

In standard state estimation techniques, statistical characterization of sensor measurement error
is needed to give more weight to measurements originating from more accurate sensors. Using the
Weighted Least Squares method, the nodal demands are adjusted to fit the constraints imposed
by the measurements and produce the most probable state estimate [184]. Another approach is
to use the Kalman Filtering method to provide a solution for the network state [185]. The state
estimate is computed using measurements with known statistical error characterization, which also
allows the derivation of the variance of this estimate. The above methods can produce a point in
state-space, a procedure which is referred to as point state estimation [186].

The assumption of a known statistical characterization of sensor measurement error can lead to
a serious miscalculation of the state estimation error in WDN. This is due to the use of pseudo-
measurements, which do not have a statistical characterization and in the best case their estimation
error is defined by an upper and lower bound. The case is similar for pipe parameters (e.g. length,
diameter, roughness coefficient), for which the most accurate description that can be given for the
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error of the parameter value is an upper and lower bound.
An alternative approach uses bounds for the representation of measurement and model param-

eter uncertainty. In contrast to point state estimation methods, the use of bounded uncertainty
can provide upper and lower bounds on the state variables. This method is referred to as interval
state estimation. In many applications, such as leakage detection and contamination detection, the
derivation of a range of possible values for the state of the WDN provides useful information for
event and fault detection methodologies. Hydraulic state bounds can be used to generate bounds
on chlorine concentration in the water network or other chemicals in the water, by taking into
consideration the uncertainty on decay rate [187]. These bounded estimates can be used to detect
water leakages and prevent catastrophic scenarios such as wide area water contamination.

The use of bounds for the representation of measurement uncertainty and their incorporation
into the state estimation cost function for WDN was introduced in [188]. This idea was developed
in [18] as the set-bounded state estimation problem. The process of calculating uncertainty bounds
for state estimates caused by inaccuracies of input data is referred to as Confidence Limit Analysis
and it was solved using different approaches, including Neural Networks [189], the Error Maximiza-
tion method [190], the Ellipsoid method and Linear Programming [191]. These methods have the
disadvantage of using a linear approximation of the water network model, which does not guarantee
that the calculated bounds contain all possible solutions based on the uncertainty.

5.4 Industrial Applications
Intelligent event detection algorithms have been developed in various distinct industrial applications.
The most relevant ones to SmartWater2020 are reviewed below.

1. Intelligent Management of Singapore Water Resources: In this project [192], a plat-
form was designed for the intelligent management of Singapore waters. Specifically, the pro-
posed platform (WaterWiSe) (ref. Fig. 30) monitors, detects, and predicts abnormal events
that may be indicative of structural pipe failures, such as bursts or leaks. There are two gen-
eral complementary strategies for dealing with pipe bursts and pervasive leakage problems,
namely, 1) the development of condition assessment tools that can identify existing leaks
or evidence of pipe deterioration and hence, support rational asset management programs,
and 2) the design of monitoring systems that can detect and localize underground events or
sources of long-term water losses, enabling timely mitigation and repair actions.
A basic component of WaterWiSe is the Integrated Data and Electronic Alerts System
(IDEAS), which is responsible for data stream management, processing and alert notifica-
tion. IDEAS is equipped with a set of analytics tools that are applied to data streams in
order to detect abnormal events and provide location estimates. A complementary compo-
nent is the Decision Support Tools Module (DSTM), which employs the sensor data streams
as an input to decision support tools that model the water network as a set of demand zones.
When data processing is completed, the water consumption can be predicted in a 24-hours
rolling window, along with a detection of those pipes that will present a low or reversed flow,
as well as the localization of areas with abnormally low or high pressure.

2. Extreme Events Detection - Heraklion Smart City: In this project [193], the uncertainty-
aware high-level data analysis module presented above was exploited to produce early alerts
for abnormal behaviors in a smart city application scenario. As shown in Fig. 31, the key
functionalities of the system are related to a) the quantification of uncertainties in raw sensor
streams, and b) the estimation of extreme events by incorporating the inherent data uncer-
tainty.
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Figure 30: The architecture of the data processing platform of Singapore water management project
(Image credits: [192]).

Specifically, the uncertainty quantifies the inherent imperfections in the acquired data. Then,
driven by the demand of providing timely notifications of extreme events, the platform con-
siders a modified version of the compliance-with-operating-limits method that incorporates
the estimated uncertainty into the streaming data to detect the times when the observations
exceed predefined upper or lower operational limits.

Figure 31: Uncertainty-aware high-level data analysis platform of the Heraklion Smart City project.

3. Acoustic sensors by Echologist (Fig. 32) are used for water loss management, leak detection,
and pipe condition assessment, for a Transmission Main Leak Detection pilot survey [194].
Echologics’ technology substantially reduces both electronic “white” noise as well as ambient
background noise. Echologists apply in United Water New Jersey (UWNJ) acoustic sensors
specifically developed for detecting leaks in large diameter mains, including sections of pipe
where standard appurtenances were not available. With this technology leak detection service,
gave the ability to UWNJ to quickly repair the leak avoiding potential failure.
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Figure 32: Echologics acoustic sensors.

4. Vibro-acoustic sensor monitoring has been develop by TrunkMinder [195] (Fig. 33) with
the ability to identify leaks including small emerging and emergent leaks that can be the
precursor to a catastrophic failure, the immediate detection of bursts, the ability to record
and analyze real-time operational conditions within their critical infrastructure and the ability
to pinpoint leaks and bursts to within 1m on site. In order to determine the effectiveness of
the technology a long term trial was arranged for TrunkMinder in a particularly challenging
environment in London where there were previously surveyed leaks along a stretch of critical
trunk main.

5. A permanent leakage monitoring system was provided by Gutermann [196] called
ZoneScan ALPHA system (Fig. 34). This system comprises of correlating noise loggers, radio
repeaters and ALPHA data collection modules. The noise loggers are deployed magnetically
on valves and hydrants, the repeaters are installed on street lamps and the ALPHA were
deployed on the top of a hill overlooking the town. The ALPHA collect the information from
the loggers every day via the repeaters using radio communication and then send the data to
the web host using GPRS. This system was employed in Eislingen in Southern Germany and
provide immediate results notifying them of the location of all the leaks.

6. The first battery powered electromagnetic flow meter equipped with the GPRS wireless com-
munication protocol were developed from ISOIL INDUSTRA [197]. They have installed hun-
dreds of ISOIL FLOWIZTM flow meters, mainly DN 100-250, with provision for the measure-
ment of volumes, flow rates and pressures in Manila and Philippines. The meters installed
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Figure 33: Trunkminder: Installation of head unit on trunk main.

permit the transfer of the captured data to a server over the Internet using dedicated soft-
ware installed and managed through our local partner. The project has enabled the Water
Authority to significantly reduce water losses compared to the previous situation.

7. A real-time hydraulic model was applied in Abu Dhabi in corporation with Schneider
Electric, Abu Dhabi Water and Electricity Authority (ADWEA) [198]. The integrated system-
Aquis, is consisting noice loggers and remote and automated meter readers. The system
was capable of calculating water balances, optimizing chlorination, identify new bursts and
prioritize the work on reducing the background leakage.

8. A new product for water monitoring, spectro::lyser, developed by S::can [199], that measures
the entire absorption spectrum and is used by many drinking water providers all over the
world as a key component in their raw water monitoring (Fig.35). The measured parameters
include TSS, turbidity, NO3-N, COD, BOD, TOC, DOC, UV254, color, BTX, O3, H2S, AOC,
temperature and pressure, depending on the application. Therefore, for water monitoring, a
decentralized event detection system based on s::can’s moni::tool, that continuously analyzes
four spectral alarm parameters to detect changes resulting from untypical, possibly harmful,
water quality events, have to be applied.

9. The Philadelphia Water Department (PWD) and Water Revenue Bureau serve the Greater
Philadelphia region, implemented WISKI (Water Information Systems KISTERS) (Fig.36)
as its OWQM data management system. Kisters [200] is a global software solutions and
technology firm dedicated to effective long-term management of water resources. WISKI is
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Figure 34: The ZoneScan monitoring system: (a) Loggers on a pipe, (b)Repeater set and (c) Alpha
set

a N-Tier solution, Presentation Layer, Business Logic Layer and Data layer. All calculations
are managed by the business logic layer (Time Series Manager) to provide a thin client and
optimize the time for data processing. WISKI has the ability to store any time series data
type with resolution down to a one second data raster.

10. Gestione Acque SpA in order to solve their problem to determine the correct amount of
hypochlorite that would need to be dosed into the water, and ensure a reliable control of the
hypochlorite dosing they applied Hach’s colorimetric chlorine analysers [201]. Hach’s CL17
Colorimetric Chlorine (Fig.37) new analysers have reliable readings even at low chlorine values,
do not produce any signal drift and practically require no calibration after the first six months
of use.
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Figure 35: S::can’s monitoring system: (a) Scan::Lyser and (b) S:can’s moni::tool

6 State-Estimation and Control
A water distribution network is the infrastructure responsible for delivering drinking water to con-
sumers. Water enters the network after it has been collected from rivers, lakes, dams or underground
sources and has been cleaned at treatment plants. Water distribution networks are comprised of
pipes which are connected to storage tanks, reservoirs or other pipes using junctions, starting from
the facilities of the water provider and reaching all the consumers. Water is supplied to consumers
through various points in the network, namely the outflow nodes. Valves are usually installed to
some of the pipes to reduce flow or pressure, or to isolate or close part of the network. Pumps de-
liver energy to the system by increasing the pressure at some locations. Both valves and pumps are
considered as hydraulic actuators, which may be controlled through automated or manual feedback
signals. Tanks which are connected to the network, fill or empty according to a time schedule or
are regulated through feedback controllers. Demand is the water outflow due to consumer requests.
Although such requests occur randomly throughout the day, in the macro-level they have some
common characteristics, such as approximate periodicity or consumption patterns, which can be
both learned and predicted.

In a water distribution network, hydraulic and quality parameters are usually measured through
a Supervisory Control And Data Acquisition (SCADA) system. Hydraulic monitoring is quite
common for water utilities, which measure flow and pressure at various points of the network in
order to observe consumption behaviour and detect leaks. Quality monitoring, on the other hand,
is more recent and involves performing mostly manual sampling or installing quality sensors at
various locations, to determine the chemical concentrations of various chemical species such as
chlorine (used for disinfection) or certain contaminants.
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Figure 36: WISKI(Water Information Systems KISTERS) system.

6.1 Leakage Risk Estimation
Risk assessment tool of WDSs is a proactive management strategy that assists network owners to
evaluate the condition of their network, to assess historical incident, real time measurements and
risk of failure data so to prioritize the work / rehabilitation based on the inherent risks and the cost
of action. WDN engineers will thus be able to prepare a proactive and organized service plan for
their WDS. Furthermore, the network managers can use such a tool in cases where they have to:
(1) decide the replacement or repair of a deteriorating network part and, (2) prioritize restoration
of simultaneous leakage incidents. This, in turn, helps them to manage their networks in a more
efficient way so they can minimize their operational and maintenance costs (Agathokleous 2015).

The need for vulnerability analysis is compounded by the importance of WDNs in our lives,
as they constitute one of the primary ”lifeline networks” of modern urban societies. It is thus
imperative to develop knowledge and to device methods for assessing their state of affairs and their
vulnerability under both normal and abnormal operating conditions (Christodoulou et al. 2018).
Furthermore, WDN vulnerability relates to water quality and the risks to the consumers’ health,
as natural or malicious threats to the WDN threaten the health and well-being of the citizens that
the WDN serves. Pipe deterioration leads to pipe breakages, breakages lead to water loss and
to infiltration of pathogens in the network, pathogens lead to water contamination, contamina-
tion leads to health threats for the population being serviced by the WDN (Christodoulou et al.
2018). Finally, WDN vulnerability is associated with the disruption of residential, commercial and
industrial activities and the cause of severe direct and indirect economic losses which, in the case
of indirect losses, are higher the more developed the society is. Direct losses relate to the cost of
repair, while indirect losses relate to the way the economy is affected by the disruption of the lifeline
(Christodoulou et al. 2018).
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Figure 37: CL17 Colorimetric Chlorine Analyser

6.2 Hydraulic Dynamics
The hydraulic analysis problem in water distribution networks is defined as the problem of com-
puting the hydraulic head at each junction and the flows at each pipe. To solve this problem, the
topology of the network and pipe characteristics, the control inputs, as well as the demand at each
node, need to be known. In general, structural information of the network is available by the water
utilities; however, pipe characteristics may require field measurements, and nodal demands at each
discrete can only be estimated using historical data and other hydraulic measurements available, if
no online demand sensors are used by the utility to monitor each consumer.

In general, a set of ordinary differential equations can be used to describe the dynamic relation
of water flow in pipes and the differences in the hydraulic heads [202]. However, in practice,
approximation of the actual hydraulic dynamics are considered in discrete time, in steady state,
and by using an iterative optimization algorithm (e.g. gradient descent), the heads and flows are
computed, so that the conservation of mass and energy is satisfied, e.g. [203].

To establish the notation, consider a water distribution network composed of pipes, junctions
and water storages. The topology of this network can be represented as a graph with edges cor-
responding to pipes, and nodes corresponding to junctions and water storages. At discrete time k
with sampling time ∆t, let di(k) be the consumer demand outflow at the i-th junction node, and
let qj(k) correspond to the flow in the j-th pipe connected to junction i (j ∈ Ai where Ai is the
set of pipe indices which are connected to the i-th node, assuming that inflows have a positive sign
and outflows have a negative sign). In accordance to the principle of mass conservation, the sum
of all the pipe inflows and pipe outflows must equal to the demand (Kirchhoff’s junction rule),∑

j∈Ai

qj(k) = di(k).

Furthermore, in accordance to the principle of energy conservation, the flow-headloss relationship
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across each link in the network must be balanced. Let hi(k) be the hydraulic head, i.e. a measure-
ment of water pressure expressed in length units, at the i-th node. For water moving from node j
(higher head) to node i (lower head) with flow ql(k) in the l-th pipe, the flow-headloss relationship
is given by

hj(k)− hi(k) = fh(ql(k)) (39)

where fh(·) is a nonlinear function, such that fh(ql(k)) = αrql(k)
αf + αmql(k)

2, which depends on
the pipe resistance coefficient αr, the flow exponent αf and the minor loss coefficient αm. These
parameters are computed using empirical methods; for example, by considering the Hazen-Williams
headloss relation, the flow exponent is αf = 1.852 and the resistance coefficient αr is calculated using
a nonlinear function which takes as arguments the pipe diameter, the pipe length and a unitless
roughness coefficient which depends on the pipe material and has been computed empirically. The
minor loss coefficient αm is given empirically by the pipe fitting type [204]. Therefore, for a water
distribution network, the set of hydraulic equations is constructed, and at each discrete time, a
gradient optimization algorithm is solved using the current demand flows, control inputs and tank
head [203].

Tanks are dynamic elements in the system and can be considered as nodes in the water distri-
bution network; the head state of the i-th water tank node is given by

hi(k + 1) = hi(k) +

∑
j∈Ai

qj(k)

fTi
(hi(k))

∆t,

where the tank head hi(k) corresponds to the relative water level plus the tank elevation, and
function fTi

(·) computes the cross-sectional area of the i-th tank at a certain height. Initial tank
heads are typically known.

Currently, a number of off-the-shelf software are used to perform the hydraulic analysis in
water distribution networks, such as the open-source EPANET [204]. To capture the time-variance
of flows and pressure due to consumer water demands, these systems perform “extended-period
simulations”, i.e. at discrete time k, solve the steady-state equations, compute the state of the
dynamic elements in the network for k+1 (i.e. the tanks), apply any control inputs and at discrete
time k + 1, repeat the procedure.

From a controls viewpoint, variations in demand flows are considered as time-varying distur-
bances, which affect flows in pipes and pressures throughout the network. In general, consumer
demands are influenced by weather conditions, season, population growth, change of habits, even
changes due to the response actions after a contamination . In practice, consumer demands are
rarely measured online for each node; this information, however, is necessary to solve the hydraulic
equations. Some information is acquired when water utilities measure the consumed water volume
for a period of some months, for billing purposes. From those data, an average daily consumption
demand could be calculated for each junction. Time varying consumer demands can be further
estimated by using some flow measurements from within the network, and calculate water demand
estimations.

Furthermore, in the hydraulic model discussed, we assume that some information of the system is
known, such as the pipe characteristics, the initial tank levels and the pump flow/pressure equation.
In addition, demands are assumed to be independent with respect to the pressure at the point of
outflow; thus the hydraulic solver discussed is entirely demand-driven [205]. In some research,
extensions to the demand-driven hydraulic model have been proposed, for pressure-driven analysis
[146].
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6.3 Quality Dynamics
Quality dynamics in water systems corresponds to the concentration of various contaminant or
disinfectant substances, as well as other water chemical parameters, such as pH or turbidity; in
this work, by water quality we refer to the concentration of some chemical substance in the water
distribution system. Contaminants and disinfectants travel along the water flow within the pipe
network, according to the advection and reaction dynamics. Advection is the transport mechanism
of a substance in a fluid, which can be modelled as a hyperbolic partial differential equation and can
be solved using various numerical methods [206]. Advection dynamics describes how a substance
concentration propagates in space and time; reaction dynamics describes the change in the substance
concentration due to decay, growth, or reaction with other substances. Advection and reaction
dynamics are coupled to describe the quality dynamics. In addition, water quality in storage tanks
is computed dynamically, and it depends on the inflows and their quality, the outflows, the tank
volume and its quality.

6.3.1 Advection Dynamics

When a substance enters a pipe in which water flows, the substance moves along with that flow.
Inside a pipe, and by neglecting axial dispersion and the substance reaction dynamics, the first-
order hyperbolic partial differential equation which describes the change in space and time of the
substance concentration in water, is given by

∂C(z, t)

∂t
+

Q(t)

aP

∂C(z, t)

∂z
= 0, (40)

where C(z, t) is the substance concentration in water at continuous time t and at distance z along a
certain pipe, with water flow Q(t) and cross-sectional area of the pipe aP . The boundary conditions
are given by C(z, 0) = C0

t (z) and C(0, t) = C0
z (t).

In water distribution system quality modeling, two main methodologies have been considered
for discretizing the set of hyperbolic partial differential equations describing the advection dynamics
within the pipe network, the Eulerian and the Lagrangian approaches [83, 84, 204]. In general, the
Eulerian schemes assume that the water moves between a fixed grid point (finite differences) or
volume segments (finite volumes), with a constant time-step [83]; a finite volume methodology was
used in EPANET version 1.1 [81]. On the other hand, the Lagrangian method considers variable-
sized water segments, with a constant time-step, unless an event has occurred; the event-driven
method is implemented in EPANET version 2.0 [84, 204].

Next paragraph provides more intuition to the formulation of a mathematical model describing
the advection in water distribution systems, by presenting the Finite Volume Method [206]. This
numerical method can be employed to approximate the set of hyperbolic partial differential equa-
tions which describe the advection dynamics. This requires to virtually segment all the pipes in the
network, into a number of finite volume cells, while the Courant-Friedrichs-Lewy (CFL) condition
is required for the convergence of the solution [206]. Consider a substance moving within a pipe
which is segmented into a finite number of volume cells; for the i-th finite volume set, we define
xi(k) as the average concentration in that cell, such that

xi(k) =
1

∆z

∫ zi+∆z

zi

C(l, k∆t)dz,

where ∆t is the length of a hydraulic discrete time-step, which is a design parameter and may
depend on the available sensors, ∆z is the width of a single cell and zi is the distance of node vi
from the pipe inflow point. Both ∆t and ∆z are assumed to be fixed within a certain pipe.
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Figure 38: A pipe segmented into virtual finite volumes

Numerical Approximation Schemes

Various numerical approximation schemes can be used for solving the hyperbolic differential
equation (40), such as the leapfrog or the Lax-Wendroff, which is second order accurate for smooth
solutions [206]. Consider a pipe which is segmented into a number of finite volume cells, and the
discrete flow q(k) = Q(k∆t); for the i-th finite volume which is not at the boundaries of the pipe,
as in Fig. 38.

The leapfrog numerical scheme is given by

xi(k + 1) = xi(k)− λ(k) (xi+1(k)− xi−1(k)) ,

and the Lax-Wendroff scheme is given by

xi(k + 1) =
λ(k)

2
[1 + λ(k)]xi−1(k) + [1− λ(k)2]xi(k)−

λ(k)

2
[1− λ(k)]xi+1(k),

where λ(k) = q(k)
aP

∆t
∆z is the Courant number, for aP the cross-sectional area of the pipe; this must

satisfy the CFL condition, i.e. |q(k)|
aP

∆t
∆z ≤ 1 for that pipe to guarantee stability in the solution[206].

The direction of the flow does not affect these specific approximations; however in the boundary
cells we need to reformulate the equations to capture the network behaviour.

Boundary Conditions

Boundary conditions need special treatment, since, depending on the flow direction and the
numerical method selected, the concentration of a finite volume outside the pipe may be needed for
calculating the state. A technique is to virtually extent the pipe by adding ghost cells at the ends,
with some virtual concentrations [206]. These cells will be used to compute the boundary states
in the pipe. The choice of what values to place in these ghost cells is not related to the numerical
solution methodology. At each new time-step, we know the internal states (or initial conditions)
and apply a boundary condition procedure to determine the values of these virtual cells.

In the case of junctions, if the water flows from the last cell into the junction, then we consider
that the ghost cell concentration x+

i (k) has the same concentration as the i-th cell, i.e. x+
i (k) =

xi(k).
In the opposite case, we need to compute the concentration at the junction node, as a weighted

sum of the concentrations which inflow. Let A+
i be the set of pipe indices which deliver water to

the i-th node; we assume that all inflows have positive values.
However, if the water flows from the junction into the cell, we need to compute the overall

concentration by considering the inflows; thus the overall concentration is given by the inflow-
weighted sum of concentrations. Let x+

(T,j)(k) be the outflow concentration of the pipe j ∈ A+
i .
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The concentration at the i-th junction node is given by

xi(k) =

 ∑
j∈A+

i

qj(k)x
+
(T,j)(k)

 ·
 ∑
j∈A+

i

qj(k)

−1

, (41)

as described in [204].
Remark: According to the Finite Volume method, the network must be segmented into a finite

number of volume cells; the number of finite cells as well as the time step considered are crucial
to guarantee stability in the approximation. In general for this method, assuming that the time
step ∆t does not change, it is considered that an optimization algorithm is solved at each discrete
time, in order to compute a new ∆z for each pipe. A different approach is to solve a nonlinear
optimization problem in which a pre-determined number of finite volumes is distributed at each
pipe, so that the minimum time step for which stability is guaranteed, is computed.

6.3.2 Reaction Dynamics

The reaction dynamics characterize how the concentration of one or more substances changes, when
reacting, decaying or growing within a finite volume of water. Single-species reaction dynamics are
widely used in research, to describe the rate of decay or growth of a substance [204]. Recently, there
has been interest in modeling multiple-species reactions, which involves coupled sets of differential
and algebraic equations, such that

dC(t)

dt
= fR(C(t), CA(t))

0 = fA(C(t), CA(t)),

where C(t) = C(t, 0) is the concentration of one or more chemical species, fR(·) is the function
describing the concentration change rate, CA(t) is a vector of algebraic variables and fA(·) is the
algebraic function which describes the mass-balance relation [207].

Reaction Models in Water Systems

In most of the research, single-species reaction dynamics are considered. Let C(t) correspond
to the concentration of a single substance within a finite water volume. Some typical reaction
dynamics are:

• No reactions dC(t)
dt = 0, e.g. for fluoride

• Linear decay dC(t)
dt = −κC(t), κ > 0, e.g. for radioactive materials

• Linear growth dC(t)
dt = κC(t), κ > 0, e.g. for trihalomethanes

Linear decay in specific, is commonly used for modeling chlorine dynamics, even though the dynam-
ics are more complex since they are coupled with the concentration of other substances reacting
with chlorine. In the next subsection we present the dynamics of chorine, one of the most common
chemical substances used for disinfection in water distribution systems.

Chlorine Reaction Modeling

Chlorine is commonly used as a water disinfectant, due to its ability to deactivate various
pathogen substances; in addition it has low cost and it is easy to store, transport and use [208].
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Throughout the water distribution network, a detectable chlorine residual is required so that the
various mirco-organisms and chemical agents are below certain thresholds set by the World Health
Organization and governments (e.g. at a minimum of 0.2 mg

L ) [5].
When chlorine is injected into water (e.g. as gas), it produces hypochlorous acid (HOCl) and

hypochlorite ion (ClO−), which react with natural organic matter floating in water or residing on
the pipe/tank walls, disinfecting the drinking water. Chlorine reacts with organic compounds and
other substances naturally present in the water flowing within the distribution networks and at the
pipe walls.

The actual chlorine reaction dynamics in most of the cases are not known, and as a result,
empirical models are utilized [209]. A common assumption in water research literature is that
chlorine dynamics are first-order linear, such that dC(t)

dt = −κC(t), where C(t) is the chlorine
concentration within a finite water volume and κ > 0 is the reaction rate coefficient, which depends
on the bulk reaction coefficient (initial water quality), the wall reaction coefficient (pipe material)
and the mass transfer coefficient (chlorine transfer from bulk water to pipe walls) [204].

In practice, the chlorine reaction rate κ in some water volume is calculated off-line by using
pipe condition information, and by measuring the concentration of a water sample in a bottle, at
various time instances; since the dynamics are considered to be linear, the slope of the log-graph
of the normalized concentration measured at each time step indicates an appropriate value for κ.
It is important to note that this decay rate can be affected by exogenous parameters, such as
temperature [204].

In order to provide a more accurate mathematical model of the chlorine dynamics in drinking
water, a number of empirical studies have been conducted [208, 210, 211, 212]. Various chlorine
reaction dynamics have been considered in research in addition to the first-order linear model, such
as:

• the i-th power order, dC(t)
dt = −κCi(t),

• the first-order with a stable component dC(t)
dt = −κ(C(t) − C), where C is a concentration

lower bound,

• the parallel first-order model, dC(t)
dt = −κaKC(t)− κ0(1− aK)C(t), where 0 ≤ aK ≤ 1 is the

percentage of the reacting chlorine concentration which decays with rate κ (fast reaction),
whereas the remaining concentration decays with rate κ0 (slow reaction).

In some studies, the parallel first-order model was shown to better capture the chlorine dynamics
[208], although the first-order linear in some studies adequately described the actual dynamics [210].

The above dynamics, however, do not consider explicitly the actual chemical reaction dynamics
of chlorine with organic matter. Following an analytical methodology, the chlorine dynamics can
be expressed as dC(t)

dt = −κC(t)− κ0C
2(t), where reaction rates κ, κ0 depend on the stoichiometry

constants and the initial conditions of both chlorine and the reacting substance; in some studies
this model was found to capture the dynamics of chlorine in drinking water with more accuracy
than other models [212].

More comprehensive models have been proposed, based on the chemical characteristics for the
reaction dynamics and the disinfection by-products in [213]. In addition, models describing chlorine
reactions with contaminants (such as sodium arsenite and organophosphate) have been proposed
[214, 215, 216].

6.3.3 Advection-Reaction Dynamics

The dynamic advection-reaction equations in pipes and tanks, which describe a water distribution
system is described below.
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Quality Modeling in Pipes

By coupling the advection and reaction dynamics, a non-homogeneous equation is formulate
describing the concentration change in time and space within a certain pipe, such that

∂C(z, t)

∂t
+

Q(t)

aP

∂C(z, t)

∂z
= fR(C(z, t)), (42)

where C(z, t) is the substance concentration in water at continuous time t and at distance z along a
certain pipe, with water flow Q(t) and a cross-sectional area of the pipe aP ; fR(·) is the concentration
change rate due to reactions.

To solve the advection-reaction equation numerically, we can use various methods, such as the
single finite-difference unsplit method, or the franctional step method, which solves separately the
advection and the reaction dynamics [206].

To illustrate the unsplit method, let’s assume that the forward Euler method is used for dis-
cretization and that the reaction dynamics are described by linear decay (42); therefore the i-th
finite volume state is given by

xi(k + 1) = xi(k)− λ(k) [xi(k)− xi−1(k)]− κxi(k)∆t,

where κ > 0 and 0 < λ(k) < 1.
For the fractional step method, (42) is segmented into two parts,

∂C(z, t)

∂t
+

Q(t)

aP

∂C(z, t)

∂z
= 0,

dC(z, t)

dt
= −κC(z, t);

by using the second-order Runge-Kutta method for the standard differential equation and the Lax-
Wendroff scheme for discretizing advection, the i-th finite volume is given by

xi(k + 1) =

[
λ(k)

2
[1 + λ(k)]xi−1(k) + [1− λ(k)2]xi(k) −

−λ(k)

2
[1− λ(k)]xi+1(k)

]
(1− κ∆t+

1

2
κ2∆t2).

In the advection-reaction algorithm implemented in EPANET 2.0, at each discrete time the
reactions are performed to compute the new concentrations within each water segment; then ad-
vection of the segments is performed [204].

Quality Modeling in Water Tanks

At least three types of tank models are considered in tank water quality modeling [204]:

• the continuous stirred-tank reactor (CSTR) model, at which the chemicals are perfectly mixed
and uniformly spread;

• the plug-flow reactor model, at which there is no mixing of water between the different water
parcels assumed to travel along the flow in the tank;

• the two-compartments mixing model, at which the tank is segmented into two perfectly mixed
compartments.
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The continuous stirred-tank reactor model is considered a reasonable assumption for various tanks
[217, 204].

Let C(t) be the concentration in a water storage tank, which supplies water to a water distri-
bution network. The water which fills the tank may be supplied from within the water distribution
network, or it may be supplied from the treatment facilities through the transport system. For the
CSTR, the quality concentration dynamics are given by

d

dt
(V (t)C(t)) = Q+

T (t)C
+
T (t)−Q−

T (t)C(t) + fR(C(t)),

where V (t) is the tank’s volume, C+
T (t) is the substance concentration of the water which flows into

the tank, Q+
T (t) is the tank inflow, Q−

T (t) is the tank outflow, and fR(C(t)) a reaction term, such
that if linear decay with reaction rate κ > 0 is considered, fR(C(t)) = −κC(t).

By using the forward difference scheme, the volume state v(k) = V (k∆t) at discrete time k is
given by

v(k + 1) = v(k) +
(
q+T (k)− q−T (k)

)
∆t,

where q+T (k) = Q+
T (k∆t) and q−T (k) = Q−

T (k∆t). Let x(k) = C(k∆t) correspond to the water
quality in the tank and let x+(k) = C+

T (k∆t) be the water quality of the water going into the tank
with inflow q+T (k), as depicted in Fig. ??. The tank water quality dynamics are given by

x(k + 1) =

(
q+T (k)x

+(k)− q−T (k)x(k)
)
∆t+ v(k)x(k)− κ∆tx(k)

v(k + 1)

=

[
q+T (k)∆t

v(k + 1)

]
x+(k) +

[
v(k)− (q−T (k)− κ)∆t

v(k + 1)

]
x(k)

6.4 Quality Control
The feedback control problem in water systems can be defined as the problem of computing at each
discrete time k, the input vector u(k), for the pumps, valves as well as the concentration of the
injected disinfectant at each booster station, so that the measured hydraulic and quality param-
eters in the output vector y(k) follow the reference signal vector r(k) specified for safe operation,
computed using the fu(·) controller function.

In practice, due to the complex inter-dependencies between hydraulic and quality dynamics, the
design of the hydraulic controller is typically considered independently from the quality controller
[218, 219]. A schematic of the controllers is depicted in Fig. 39; the water distribution system
is driven by unknown consumer demands which exhibit certain periodicity, and uncertainty; at
certain locations within the distribution network, on-line flow and pressure sensors are installed and
monitored through SCADA, as well as some quality sensors measuring various chemical parameters.
In addition, manual sampling for laboratory examination is performed at certain locations. A
hydraulic and a quality controller take the measurement outputs into consideration, as well as the
desired hydraulic and quality specifications and any constraints, and compute an input signal which
regulates the flows and pressures at valves and pumps, as well as concentration at the disinfectant
boosters.

6.4.1 Hydraulic Faults

Hydraulic faults may correspond to leakages within the water distribution network or at tanks,
to pipe bursts, to blocked pipes or to malfunctioning pumps and valves. In addition, we may
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Figure 39: Controller for water distribution networks. Hydraulic and quality control are decoupled,
but may exchange some information. The control objective is to regulate pressures and water
quality so that they are within the desired bounds specified by the regulations.
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consider as a hydraulic fault the unauthorized back-flow in the network using a pump for injecting
contaminants.

Water loss may be due to a variety of reasons, such as leaks, theft or unauthorized use and faulty
water meters. The largest portion of the water lost is due to leaks or breaks [8]. A break is an
abrupt fault needing immediate action, and it is usually easy to isolate the location of the problem.
On the other hand, leaks due to cracks at pipes, tanks or loose fittings can remain unnoticeable,
are difficult to isolate and may cause significant water losses and escaping revenues. Some of these
problems are prompted by the deterioration of the infrastructure, mainly due to age, or by high
pressures. Water loss imposes an economic burden on the water utilities while reducing water
supplies; furthermore it may cause quality faults. For example a crack in a pipe under certain
circumstances can be the entry location for contaminants (e.g. organic matter).

Mathematical models which describe the leakage flow with respect to the pressure at the leakage
location have been proposed in various empirical studies [220, 146]. Let ϕh(k;h(k)) be the hydraulic
leakage fault, i.e. the flow due to leakage measured in m3

hr , occurring at a node with head h(k), at
time k. Hydraulic faults can be modelled mathematically as

ϕh(k;h(k)) = aD[fl(h(k))]
aE , (43)

where aD > 0 is a discharge coefficient, aE ∈ [0.5, 2.5] is an exponent term which depends on the
leakage type and fl : R 7→ R is an unknown function which maps the measured hydraulic head to
the pressure at the leakage location (the pressure at the location where the leakage has occurred
is usually not measured). In this model, both the discharge coefficient and the exponent term are
unknown. However, empirical studies has shown that the exponent for small background leaks is
aE ≈ 1.5, for larger leaks in plastic pipes is aE ≥ 1.5 and for larger leaks in metal pipes is aE ≈ 0.5.
In this work we consider the leakage fault model in simulating realistic leakage faults.

When a demand-driven hydraulic model is used, the leakage can be assumed as an additional
time-varying demand, proportional to the corresponding nodal pressure/head; for the j-th node,
the demand with a leakage fault is modelled as

dj(k) = d∗j (k) + ϕh(k;hj(k)),

where d∗j (k) is the real consumption demand, and hj(k) the nodal head. For modelling purposes,
leakages which occur within a pipe are assigned as outflow from one of the adjusted nodes, which
may be selected randomly.

6.4.2 Quality Faults

Quality faults may occur due to the contamination of water by certain substances, usually chem-
ical, biological or radioactive, which travel along the flow, and they may exhibit decay or growth
dynamics. A contaminant substance can be injected into a network at any point by connecting a
pump and forcing the outflow direction to reverse. The contaminant travels within the network,
following the path of the carrier. Digestion of the contaminated water by consumers may affect the
health of the served population; in addition, use of contaminated water in industrial production
may cause economic losses.

Consider a water distribution network composed of pipes, junctions and water storage tanks.
The topology of this network can be represented as a graph with edges corresponding to pipes, and
Nm nodes corresponding to junctions and water storage tanks. For modeling purposes, each pipe in
the network is a priori virtually segmented into a number of finite volume cells. Let Nn be the total
number of all nodes and finite volume cells considered in the network. Let xi(k) denote the average
concentration of a certain contaminant at discrete time k, for i ∈ {1, ..., Nm, ..., Nn}. The vector
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x(k) = [x1(k), ..., xNm
(k), ..., xNn

(k)]⊤ is the state of the contaminant concentration dynamics. Let
V be the set of all node indices, such that V = {1, 2, ..., Nm}.

The advection-reaction equations [206] describing the propagation of a contaminant in a water
distribution network can be expressed in a state-space formulation:

x(k + 1) = A(k)x(k) + fR(x(k)) + Fϕ(k),

yc(k) = Cx(k) (44)

where A(k) is an Nn × Nn matrix which characterizes the advection dynamics and captures the
network topology, and fR : RNn 7→ RNn is a function which describes the reaction dynamics of
the contaminant. For Nm possible injection locations (i.e., at the nodes), let F be an Nn × Nm

matrix describing the locations of the injected contaminant. The function ϕ : N+ 7→ RNm describes
the change in the contaminant concentration due to a substance injection. The output vector
yc(k) ∈ RMs corresponds to the state measurements, which are monitored using Ms online sensors.
C is a binary output matrix, C ∈ {0, 1}Ms×Nn , such that the element (i, j) is C(i,j) = 1 when the
i-th quality sensor measures the j-th state, and C(i,j) = 0 when there is no quality sensor installed.

We define a finite set E of fault-location matrices Ej , j = {1, ..., 2Nm}, given by

E =




Ej
(1,1) 0

. . .
0 Ej

(Nm,Nm)

 | Ej
(i,i) ∈ {0, 1}, j = {1, ..., 2

Nm}

 , (45)

where E(i,i) = 1 corresponds to the case when a contaminant is injected at the i-th node i ∈ V. For
the i-th fault-location matrix Ei ∈ E , we define the injected contaminant location matrix F given
in (44) as F = [Ei | 0]⊤, where 0 is an (Nn −Nm)×Nm zero matrix; F is of dimension Nn ×Nm.

The function ϕ(k) = [ϕ1(k), ..., ϕNm(k)]⊤ corresponds to the signals of the injected contaminant
concentrations. These have a certain start time and duration, and are non-negative. The function
ϕ(k) can be represented through Nz linearly parameterized basis functions ζ(k) = [ζ1(k), ..., ζNz

(k)]⊤,
such as pulses or radial-basis functions. Therefore, ϕ(k) is expressed as

ϕ(k) = Θζ(k), (46)

where Θ ∈ RNm×Nz . The (i, j) element of Θ, denoted as Θ(i,j), represents the amplitude of the
basis function ζj(k) which is added to the state xi(k). Hydraulic dynamics are considered as
approximately periodic (e.g. with a daily or weekly period) due to the periodic nature of consumer
water demands. The basis functions are used to break up one hydraulic period into Nz time
segments with possible overlaps, as in the case of radial basis functions. The motivation behind
the use of a linearly parameterized form of the fault function, is that it simplifies the process of
computing a finite set of fault parameter matrices, either through grid sampling or otherwise. This
will be useful during the solution methodology for sensor placement (see Chapter 3).

From a practical viewpoint, the contaminant injection is measured in terms of the injected
contaminant mass per unit time ( mg

min ), while the state-space formulation is described in terms of
contaminant concentration (mg

L ). The fault function ϕi(k) affecting the i-th node can be expressed
as a fraction of a contaminant mass injection rate ( mg

min ) over the nodal inflows ( L
min ).

6.5 Pressure Control
Most research works dealing with WDSs aims at optimizing the network management through
actions associated with the real losses. Figure 40 illustrates the main factors that affecting real
losses optimization, showing that the pressure management is one of the main parameters.
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Figure 40: Leakage management [221]

For this reason, particular attention is given to the pressure control of WDSs and implementation
of the District Metered Areas (DMAs) has been established (Fig. 41). DMAs are defined sections
of the network that are comprised of separate regional water meters as well as of one entry / exit
point. Water pressure within the pipelines of a DMA should be steady (about 3 bars). Therefore,
there should not be large deviations in altitude within DMAs, especially in gravity-based networks.
For cases where this is unavoidable, pressure reducing valves (PRVs) could be installed in order to
ensure constant pressure across the DMA.

The importance of network pressure and the role of the valve control forces researchers to work
in extent on this topic. The subdivision of WDSs into DMAs has been successfully applied in the
pursuit of low-cost leak reduction methods by facilitating simplistic demand metering and pressure
control [223]. The flow into these sectors can be measured and the pressure can be reduced to
continuously maintain the minimum pressure requirements at a critical point. This practice has
allowed an efficient leakage management, but it has severely reduced the redundancy in network
connectivity [224] and water quality [225]. Recent work on WDSs with dynamically adaptively
network topology [224] presentss a hybrid mode of operation that integrates the benefits of leakage
reduction and management provided by sectorised networks with the extra benefits of improved
network connectivity, redundancy and resilience. Dynamically adaptive networks are segregated
into small sectors during periods of low demand in order to maximize the detection and pre-
localisation of leaks.
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Figure 41: A typical arrangement of a WDN [222]

6.6 Industrial Applications
The research efforts for the development and deployment of WDN real-time monitoring systems
had begun in the early 80’s. Indicative is the research work by [188], who studied the development
of a real-time monitoring model as a prerequisite of any form of online control. The development of
a Wireless Sensor Network (WSN), focused on the monitored parameters, was also examined by the
research activities of [226] and [227]. Furthermore, the architecture of the developed system and the
efficiency of the sensors that will be implemented should also be examined, as discussed in the work
by [228]. ‘Project Neptune’ [182] is a research work that targeted the development of a complete
management system for the WDNs. The model is based on three pillars: the enhancement and
upgrade of the WSN monitoring system, the development of tools for the management of pressure
and energy (consumed by the system), and the development of an integrated DSS for the evaluation
of rehabilitation strategies.

The Water-WiSe platform, presented in [229, 230], is an example of an integrated system com-
prised of wireless sensors for monitoring the WDN in real time. The Water-WiSe platform includes:
(i) low cost WSN, (ii) leakage detection algorithms and (iii) real time data recordings to improve
state estimation for the network.

Another industrial application is the software package developed by i2O water [231]. The i2O
platform (Fig. 42) provides a suite of smart water network solutions that comprises: (i) Logging,
Visualization and Alarms (dNET), (ii) Network Monitoring (iNET) and (iii) Advance pressure
Management (oNET).

7 Discussion and Concluding Remarks
Based on the overview for the networking and communication technologies, well-established math-
ematical tools for WDN, data acquisition and processing, event diagnosis, state estimation and
control and the representative industrial applications, the following discussion points can be ex-
tracted:

• Short-range enabling technologies offer an easy-to-deploy cost effective solution for battery
operated nodes, which could be extremely beneficial for parts of the water network with
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Figure 42: : i2O Platform [231]

minimum or no access to infrastructure (e.g., main power supply). This could be linked to
short-term monitoring of specific aspects of the water network (e.g., exchanging laboratory-
based quality sampling with on-site monitoring of quality parameters at designated regions);

• The provision of IP interoperability of short-range technologies through the means of the
6TiSCH industrial protocol stack is an important step towards providing scalable and cost-
effective solutions in the smart water metering arena, easing the integration with designated
control centers and abstracting heterogeneity at the level of the sensing infrastructure (e.g.,
through CoAP services);

• LoRA/LoRAWAN and NB-IoT are expected to empower long-range water sensing technolo-
gies, since opposed to short-range architectures, they require fewer intermediate components
(e.g. bridging gateways), and thereby less complicated architectures. Even so, due to the
increased power consumption they are preferred for deployments that will benefit from the
existence of some infrastructure (e.g., access of main power supply or integration with photo-
voltaic cells). As such, long-range technologies for smart water networks, could be a feasible
alternative solution for existing GRPR-based telemetry systems, suitable for long-term de-
ployments and continuous monitoring / control of water parameters at relevant advanced
metering infrastructures (e.g., pressure and flow monitoring).

• Epanet and other mathematical modeling tools, are capable to model and simulate a WDN
behavior. WDNs agencies by using such mathematical tools are able to not only monitor
their networks in real time but they would also be provided with a decision support tool for
taking maintenance actions.

• In data acquisition and processing of SWNs, two main causes of missing data were introduced:
(i) measurements are not acquired due to sensor malfunction, or not transmitted due to
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network failure; (ii) missing data positions are introduced artificially in order to increase the
time resolution of a given data stream, or to synchronize distinct data streams acquired at
different sampling frequencies. These problems can be solved by using matrix completion,
(MC) and tensor completion, (TC) that have demonstrated increased performance in various
application domains.

• Event detection in WDN has been investigated by many authors and various approaches have
been proposed for addressing the problem of leakage/contamination detection, using single
or multiple-type measurements which are analyzed separately or in combination, from one or
more locations in the network, using model-based or model-free approaches.

• The main challenges of water distribution networks, are related to Monitoring for event detec-
tion, and Control for efficient and fault-tolerant operation. For monitoring, utility operators
may use sensors installed within the water distribution system, as well as manual sampling
with utility employees, to determine the occurrence of events which may affect the normal
operation of the system. By controlling the system actuators (such as pumps, valves), water
utilities are able to supply sufficient quantity of water of good quality to consumers, while
maintaining low pressures in order to reduce background leakages, reduce energy usage as well
as reconfigure the system appropriately when an event occurs in order to reduce its impact.
Moreover, utilities must make long-term planning ahead, to guarantee that the appropriate
infrastructure is in place, in parallel with the development of the urban environment.

With regard to industrial applications:

• short-range deployments are preferred for research-oriented goals, for enabling the design of
sophisticated (decentralized) algorithms (e.g., for leakage detection) and testing in field new
sensing technology. By contrast, long-range deployments are preferred for system-wide studies
with emphasis on end-to-end solutions for accessing water parameters, based on off-the-shelf
sensors and centralized processing.

• several commercial software and products have been made commercially available for mon-
itoring, management and controlling of WDSs, aiming at improving WDSs. However, all
available commercial tools concerning the management of WDNs have two major drawbacks:
the high cost of ownership and the ownership of data.

• intelligent event detection algorithms have been developed in various distinct industrial appli-
cations using platforms in order to monitor, detect and predict abnormal events. Important
instruments for leak and quality detection are sensors, noise loggers, radio repeaters, flow
meters and meters readers.

• real time monitoring models and wireless sensor networks in platforms are preferred for the
development and deployment of WDN real-time monitoring systems.
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