

Introduction to EPANET

Pavlos Pavlou (M.Sc) Research Engineer KIOS Research and Innovation Center of Excellence University of Cyprus

Monday 27/4/2020 10:00 - 12:00 a.m.

University of Cyprus Imperial College London

Contents

- A1_What is EPANET
- <u>A2 Why Epanet</u>
- <u>A3_EPANET Components</u>
- <u>A4_EPANET Menu</u>
- <u>A5_EPANET Network Analysis</u>
- <u>A6_Water Network Design</u>
- <u>A7_EPANET Extended Simulations</u>

A1_ What is EPANET

www.kios.ucy.ac.cy

KôĩoC

EPANET is developed by the United States Environmental Protection Agency's (EPA) Water Supply and Water Resources Division. It is a **public domain, water distribution system modeling software.**

SEPA United States Environmental Protection

https://www.epa.gov/water-research/epanet

- EPANET software
- EPANET manual

EPANET

Application for Modeling Drinking Water Distribution Systems

EPANET is a software application used throughout the world to model water distribution systems. It was developed as a tool for understanding the movement and fate of drinking water constituents within distribution systems, and can be used for many different types of applications in distribution systems analysis. Today, engineers and consultants use EPANET to design and size new water infrastructure, retrofit existing aging infrastructure, optimize operations of tanks and pumps, reduce energy usage, investigate water quality problems, and prepare for emergencies. It can also be used to model contamination threats and evaluate resilience to security threats or natural disasters.

§
[00]

EPANET (cont.)

Hydraulics

- Perform *extended-period simulation* of the hydraulic and water quality behavior
- Pressure/Consumption at each node
- Flow/Velocity at each pipe
- Water height at storage tanks
- Energy/Electricity cost at pumps
- Variety of valves (PRVs, FCVs,...)
- Can use time / rule-based controls (PLC).
- Model leakages

EPANET (cont.)

<u>Quality</u>

- Chemical concentration/Water quality in all components (Nodes, pipes, tanks, ...)
- Models movement of substance in network over time.
- Models growth/decay of substance (HOCL, TTHMs).
- Models water age.
- Models bulk/wall reactions.
- Models decay with different dynamics.
- Models substance injection.

www.kios.ucy.ac.cy

EPANET Scenarios

٠

.

- What happens if a valve is opened or closed.
- System's behavior under different flows and / or pressures.
- How does network pressure changes during the day and what is its magnitude.
- Sufficiency of water tanks in case of an emergency event (i.e. fire, interruption of the water supply into the tanks).
- Quality sensors placement.
- Most vulnerable locations within the network.

ζôĵoς

EPANET Formulas: Friction Losses – Head Loss

$$h_{\rm L} = \frac{K \times L \times Q^{1.852}}{C^{1.852} \times D^{4.871}}$$

[k: conversion factor for the unit system (k = 1.318 for US customary units, k = 0.849 for SI units)] [C: roughness coefficient]

• Darcy - Weisbach formula (all liquids and all flow regimes)

$$h_{\rm L} = f \frac{8 \times L \times Q^2}{g \times \pi^2 \times D^5}$$

[f: friction factor]

٠

Chezy - Manning formula (mostly for open channel flow)

$$h_{\rm L} = \frac{4.66 \times n^2 \times L \times Q^2}{D^{5.33}}$$

[n = Manning's Roughness Coefficient]

ζôĵoς

www.kios.ucy.ac.cy

EPANET Formulas: Friction Losses – Head Loss

Material	Hazen-williams C	Darcy-Weisbach ε	Manning's n	
Cast Iron	130-140	0.85	0.012-0.015	
Concrete or concrete lined	120-140	1.0-10	0.012-0.017	
Galvanized Iron	120	0.5	0.015-0.017	
Plastic	140-150	0.005	0.011-0.015	
Steel	140-150	0.15	0.015-0.017	
Vitrified Clay	110		0.013-0.015	

§
[0]

A2_Why EPANET

www.kios.ucy.ac.cy

Kôĩoç

EPANET is a useful tool to investigate what-if scenarios involving hydraulics and quality.

- EPANET is free to use, and is the state-of-art.
- It's easy to use!

EPANET

٠

- There is an active community working on EPANET.
- Demand-driven; cannot capture pressure-driven demands.
- Can be used in any new software tool.

www.kios.ucy.ac.cy

(a) EPANET Graphical User Interface (GUI)

Standalone program that addresses the standard capabilities given by the EPANET Library.

(b) EPANET open-source toolkit

EPANET (cont.)

EPANET Libraries can be integrated in any programming language and are compatible with any operating system.

[i.e H2OMap and H20Net (Innovyze), Mike Urban (DHI), WaterCAD and WaterGEMS (Bentley), WatDis (Transparent Blue)].

EPANET Library

www.kios.ucy.ac.cy

A3_ EPANET COMPONENTS

www.kios.ucy.ac.cy

Components

Physical Components

- Nodes: Junctions, Reservoirs, Tanks.
- Links: Pipes, Pumps, Valves.

Non-Physical Components

- Controls
- Curves
- Patterns

%
ioc

Pipe

- Length
- Diameter [Inner Diameter]
- Roughness [i.e. for PVC pipe is 140 (H-W), 0.005 (D-W)]
- Initial status [open/closed/cv]
- Loss coefficient [minor/local losses]
- Bulk coefficient [water quality]
- Wall coefficient [water quality]

Pipe 160	E
Property	Value
*Pipe ID	160
*Start Node	T-101
*End Node	128
Description	Outlet, Kato Pol
Tag	
*Length	528.473694
*Diameter	150.000000
*Roughness	1.000000
Loss Coeff.	0.000000
Initial Status	Open
Bulk Coeff.	
Wall Coeff.	
Flow	#N/A
Velocity	#N/A
Unit Headloss	#N/A
Friction Factor	#N/A
Reaction Rate	#N/A
Quality	#N/A
Status	#N/A

Junction

Pipe connections, consumers, points of substance injection, points of water entrance.

- Elevation
- Base Demand
- Demand Pattern
- Emitter Coefficient (sprinklers/leaks)

Outflow depends on pressure $q = C \ge p^{\gamma}$

- Initial Quality
- Source Quality

Junction 64	
Property	Value
*Junction ID	64
X-Coordinate	200905.85
Y-Coordinate	336706.30
Description	W/M 124
Tag	
*Elevation	6.000000
Base Demand	3.722910
Demand Pattern	124
Demand Categories	1
Emitter Coeff.	
Initial Quality	
Source Quality	
Actual Demand	#N/A
Total Head	#N/A
Pressure	#N/A
Quality	#N/A

www.kios.ucy.ac.cy

Water storage.

Tank

- Elevation
- Initial level
- Minimum level
- Maximum level
- Diameter

٠

.

• Minimum volume

Property	Value
*Tank ID	T-101
X-Coordinate	199907.86
Y-Coordinate	341527.92
Description	Kato Polemidia
Tag	
*Elevation	104.000000
*Initial Level	3.500000
*Minimum Level	0.000000
*Maximum Level	4.000000
*Diameter	12.620000
Minimum Volume	0.000000
Volume Curve	
Mixing Model	MIXED
Mixing Fraction	
Reaction Coeff.	
Initial Quality	
Source Quality	
Net Inflow	#N/A
Elevation	#N/A
Pressure	#N/A
Quality	#N/A

Reservoir

Infinite sources of water, treatment plants. Reservoirs are not affected by the flows/pressures.

- Total Head (Elevation)
- Head Pattern
- Initial Quality
- Source Quality

Property	Value	
*Reservoir ID	R-1	
X-Coordinate	202967.11	
Y-Coordinate	342575.03	
Description	Treatment works	
Tag		
*Total Head	155.000000	
Head Pattern		
Initial Quality		
Source Quality		
Net Inflow	#N/A	
Elevation	#N/A	
Pressure	#N/A	
Quality	#N/A	

Valve

• Diameter

GPV]

• Setting

Loss Coefficient

• Fixed status [None, Open, -Closed]

• Type [PRV, PSV, PBV, FCV, TCV,

Valve 131	X
Property	Value
*Valve ID	131
*Start Node	18
*End Node	T-4A
Description	Z4 Panthea d.s.
Tag	
*Diameter	150.000000
*Туре	PSV
*Setting	4.600000
Loss Coeff.	0.000000
Fixed Status	None
Flow	#N/A
Velocity	#N/A
Headloss	#N/A
Quality	#N/A
Status	#N/A

Valve (cont.)

- Pressure Reducing Valve (PRV)
- Pressure Sustaining Valve (PSV)
- Pressure Breaker Valve (PBV)
- Flow Control Valve (FCV)
- Throttle Control Valve (TCV)
- General Purpose Valve (GPV)

Setting:

- Pressure (PRVs, PSVs, PBVs)
- Flow (FCVs)
- Loss coefficient (TCVs)
- Head loss curve (GPVs)

Valve 131	X
Property	Value
*Valve ID	131
*Start Node	18
*End Node	T-4A
Description	Z4 Panthea d.s.
Tag	
*Diameter	150.000000
*Туре	PSV
*Setting	4.600000
Loss Coeff.	0.000000
Fixed Status	None
Flow	#N/A
Velocity	#N/A
Headloss	#N/A
Quality	#N/A
Status	#N/A

Valve (cont.)

- PRV: Limits the pressure
- PSV: Maintains the pressure
- PBV: Simulate pressure drop (Not a physical device)
- FCV: Limits the flow
- TCV: Simulate a partially closed valve – head loss _ adjustment
- GPV: Simulate turbines or back-flow prevention valves – adjust flow - head loss curve

Valve 131	X
Property	Value
*Valve ID	131
*Start Node	18
*End Node	T-4A
Description	Z4 Panthea d.s. i
Tag	
*Diameter	150.000000
*Туре	PSV
*Setting	4.600000
Loss Coeff.	0.000000
Fixed Status	None
Flow	#N/A
Velocity	#N/A
Headloss	#N/A
Quality	#N/A
Status	#N/A

Valve (cont.)

- PRVs, PSVs or FCVs cannot be directly connected to a reservoir or tank (use a length of pipe to separate the two).
- PRVs cannot share the same downstream node or be linked in series.
- Two PSVs cannot share the same upstream node or be linked in series.
- A PSV cannot be connected to the downstream node of a PRV.

Valve 131	8
Property	Value
*Valve ID	131
*Start Node	18
*End Node	T-4A
Description	Z4 Panthea d.s.
Tag	
*Diameter	150.000000
*Туре	PSV
*Setting	4.600000
Loss Coeff.	0.000000
Fixed Status	None
Flow	#N/A
Velocity	#N/A
Headloss	#N/A
Quality	#N/A
Status	#N/A

Pump

Increase hydraulic head, can be turned on/off and can compute energy consumption and costs.

- Pump Curve (head vs flow)
- Power
- Speed
- Pattern

.

٠

• Initial status

www.kios.ucy.ac.cy

Curves

Type of Curves:

- Pump (pump)
- Efficiency (pump)
- Volume (tank)
- Head Loss (GPV)

Pump Curve (Flow-Head):

 The head that the pump can perform, at a given flow.

Controls

• Simple or Rule-Based

Pattern

•

•

•

Time Series Patterns

(Reservoir)

Demand/Consumption

Head/Pressure Patterns

Chemical concentration

Patterns (Reservoir, Tank)

Patterns (Nodes)

Demand Pattern – Design Scenario

A pessimistic outlook!!

The networks are designed for the worst case scenario:

The busiest time of the day during the busiest day of the week of the less favorable month with the biggest population served (30 years out). It is assumed that if it is capable of functioning at the moment of greatest demand, it will do so without problems the rest of the time. The way to represent this mathematically is by multiplying the coefficients:

 $f_{Global} = f_{Daily} \times f_{Weekly} \times f_{Monthly} \times f_{Consumption not measured}$

Property	Value	
Flow Units	СМН	
Headloss Formula	H-W	
Specific Gravity	1.000000	
Relative Viscosity	1.000000	
Maximum Trials	50	
Accuracy	0.01000000	
lf Unbalanced	Continue	
Default Pattern	1	
Demand Multiplier	1.0000	
Emitter Exponent	0.5000	
Status Report	Full	
CHECKFREQ	2	
MAXCHECK	10	
DAMPLIMIT	0.0000000	

§
[00]

A4_EPANET MENU

www.kios.ucy.ac.cy

Kôĩog

Copy in memory

Edit Menu

• Select network elements

- Set map coordinates
- Add background image
 [e.g. map]
- Search network elements
- EPANET options

Project Menu

- Run simulation
- Specify default options
- Network summary
- Calibration tool

Kôlog

- Simulation results analysis
- Table of results
- Graphs
- Export results in files

K<

Window Menu

• Arrange Windows

Kôlog

www.kios.ucy.ac.cy

Help Menu

• Tutorials

• Help topics

Data Browser

- Details of all the features
- Junctions
- Reservoirs
- Tanks
- Valves
- Patterns
- Curves
- Controls
- Options

Kôĩoç
Map Browser

• What to view on the map

[e.g. flows, velocities, elevations, pressures, heads]

 Play a time-lapse of the simulation

KôĩoC

Specify system preferences

 $\mathbf{\Sigma}$

Preferences (cont.)

- General description
- Decimals

Kôĩoç

Query

• Query network components

www.kios.ucy.ac.cy

Case Study:

Find all nodes with pressure below 30 meters.

Options

• Open Options menu

www.kios.ucy.ac.cy

• Specify the style of the

elements you view

• See node / link values

[based on Map Browser]

- Flows arrows
- Size of node / links relative to size

Kôĩoç

Summary

• Print network summary

• Window Help

Summary (cont.)

• Print network summary

Kôĩoç

A5_EPANET NETWORK ANALYSIS

Defaults

• Set the defaults

www.kios.ucy.ac.cy

Defaults (cont.)

• Set the defaults

Defaults (cont.)

- Set default values
- Auto length

[ON]

Defaults (cont.)

• Litres per second (LPS)

Flow: liters/second Pressure: column meters of water Diameter: millimeters Length: meters Elevation: meters Dimensions: meters

- Headloss Formula
 - D-W H-W

C-M

 Increase maximum trials or increase accuracy if problem in convergence

§
[0]

Times

• Pattern step **Browser** 23 Map Data Nodes Pressure Ŧ Links Flow Ŧ Time 14:00 Hrs • • ۲ I I •

• Times Attributes

Simulation time

• Hydraulic step

• Quality step

www.kios.ucy.ac.cy

www.kios.ucy.ac.cy

- Energy Attributes Efficiency
- Cost

٠

•

Energy

• Price pattern

Quality - Reactions

- Numerical method to simulate how substances propagate and react (decay/grow) in the network
 - Chlorine
 - Water age
 - Trihalomethanes (THMs)

Reactions occur within the bulk water and at the pipe walls

Quality Options		23			Reactions Options		<u>ه</u>	
Property	Value		Hydraulics		Property	Value		Hydraulics
Parameter	Chlorine		Reactions		Bulk Reaction Order	1		Reactions
Mass Units	mg/L		Times		Wall Reaction Order	First		Times
Relative Diffusivity	1.0		Energy		Global Bulk Coeff.	5		Lineigy
Trace Node					Global Wall Coeff.	-1		
Quality Tolerance	0.01				Limiting Concentration	0.0		
			,		Wall Coeff. Correlation	0.0		

ζôĵoς

Run Analysis

• Run simulation

www.kios.ucy.ac.cy

Run Analysis (cont.)

• Legend with automatic

colors

• View results by hovering at a node / link

K<

Run Analysis (cont.)

Change legend colors

 \leq

Run Analysis (cont.)

• Updated legend colors

www.kios.ucy.ac.cy

<@ĵoc</pre>

 $\mathbf{\Sigma}$

www.kios.ucy.ac.cy

Reaction Full... Graph... Table... Options... Options... Control of the second s

LPS 💽 100% X,Y: 201974.65, 338542.13

📀 EPANET 2 - 126.inp

📫 Network Map

Auto-Length Off

🗅 🚅 🔚 🎒 🐚 🗙

File Edit View Project Report Window Help

Status Energy

Calibration

• Simulation results

- Table of results
- Graphs

Results

• Export results in files

🐼 Browser 🛛 🔀

Data Map

◣ы⊈ф@Щ其о╘日⊢∽ит

- • •

Day 1, 12:00 AM

Results

· View simulated time-

series results

Results

• View results in table form

§
[0]

 $\mathbf{\Sigma}$

Type of Errors/Warnings

Hydraulic Status:

0:00:00: Pump 107 changed by Tank T-1 control 0:00:00: Balancing the network: 0:00:00: System ill-conditioned at node 1 0:00:00: Reservoir R-2 is closed 0:00:00: Reservoir R-3 is closed 0:00:00: Tank T-1 is closed at 5.00 m 0:00:00: Pump 107 open

WARNING: Negative pressures at 0:00:00 hrs. WARNING: Pump 107 open but exceeds maximum flow at 0:00:00 hrs.

Run Status

Warning messages were generated. See Status Report for details.

A6_Water Network Design

www.kios.ucy.ac.cy

Exercise A6.1_Drawing Elements

Steps:

- 1. Set Defaults
 - ID Labels: Set ID increment to 1
 - Properties: Choose default values for some properties
 - Hydraulics: Choose Flow Units and Headloss formula

2. Display options

- View Options
- 3. Draw the network
 - First import nodes (reservoir, junctions, tank)
 - Draw links (pipes, valves, pumps)
- 4. Set object properties

- 5. Add patterns, controls and curves
- 6. Set time options
- 7. Run analysis

A. Design the following gravity system in galvanized iron knowing that at point E consumption is 5 l/s and that A is a comparatively infinite source of water. Diameter of the pipeline is 125 mm and pipe roughness is 120 (H-W) [Set these values as default].

(@)[OC

First import the nodes and afterwards the pipes. Hints: 1.

> 2. Always place a node in the intermediate highest points (i.e. Node B' at 345m from A).

By placing an extra node in high points you will be able to verify that the pressure is sufficient.

§
[0]

B. A branch line must be added to the design, to supply a second town, point G, with 7 l/s. Modify the design according to the new data.

Redesign some pipes in order to have pressure above 5 m in nodes E, G and B' and above / close to 10 m to the rest of the nodes. For the new members, Diameter is 150 mm and pipe roughness is 120 (H-W).

<@ĵoc</pre>

%

C. Load the demand pattern and run a 72 hr. simulation.

Is there any change? Is there any negative pressure (if yes, at which time step?)

Optimize network (change diameters and / or add new pipes).

Times Options		×
Property	Hrs:Min	
Total Duration	72	*
Hydraulic Time Step	1:00	_
Quality Time Step	0:05	
Pattern Time Step	1:00	
Pattern Start Time	0:00	
Reporting Time Step	1:00 5	
Report Start Time	14:00 🗲	2
Clock Start Time	12 am	
Chatiatia	KI	Ŧ

§
[00]

D. New factory at point E with a base demand of 0,127 l/s

(Add the new factory demand pattern).

Is this factory affecting the system?

Is it necessary to enlarge the current system?

	Base Demand	Time Pattern	Category	Junction E	
1	5	1	Population	Property	Va
2	0.127	2	Factory	Description	10
3				Tag	
4				*Elevation	32
5				Base Demand	5
6				Demand Pattern	1
	1			Demand Categories	2

ζôĵ

Pressure

5.00

10.00

25.00

30.00

m

K S ÍOC

www.kios.ucy.<u>ac.cy</u>

A7_EPANET EXTENDED SIMULATIONS

www.kios.ucy.ac.cy

EPANET SCENARIOS

- Network analysis
 - Coordinates, Elevations, Demand Categories, Patterns
 - Tank, valve, pump, reservoir properties
 - Sub-DMAs: tank area, PRV area
 - Load map
- PRV Active/Inactive Pressure change
- Tank Capacity (closed pump)
- Pump control Energy cost relationship
 - System flow graph
 - Energy cost table

- Chlorination scenario
 - Bulk coefficient: 0.2378
 - Select reservoir/tank Set Initial Quality (Concentration)
- Contamination scenario
 - Select node Set Source Quality/Setpoint Booster

EPANET Graphs

www.kios.ucy.ac.cy

٥ آ آ

EPANET Tables

- 0 ×

🕸 Browser 🔤 🛆

Map

Ŧ

-

•

Þ

Data

Nodes

Links

Flow

Time

•

Open

Open

Open

Open

Open

Open

Open

Open

13:00 Hrs

x

٨

Demand

www.kios.ucy.ac.cy

۲.

Auto-Length Off

CMH

384%

X,Y: 203898.77, 338794.53

PRV Inactive – Pressure Profile

www.kios.ucy.ac.cy

PRV Active – Pressure Profile

www.kios.ucy.ac.cy

Chemical Spread

www.kios.ucy.ac.cy

%
loc

Pump Controls – Energy Cost

Kộlog

Acknowledgments

Research Projects

- **KIOS CoE**: Teaming for Excellence Project
- Interreg V-A Greece-Cyprus, SmartWater2020
- CyRPF Enterprises, WaterAnalytics
- ERC Advanced Grant, Fault-Adaptive
- ERC Proof-of-Concept, SmartTap
- 7th Framework Program, EFFINET

Partners

- Water Board of Limassol
- Cyprus Water Development Department
- PHOEBE Research and Innovations Ltd

Introduction to EPANET

KIOS Research and Innovation Center of Excellence Thank University of Cyprus 00 - 1200 cm

10:00 - 12:00 a.m.

University

of Cyprus

Imperial College

London

funded by:

